Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo định lí Bezout ta có:
\(f\left(-5\right)=3.\left(-5\right)^2-5a+27=2\)
\(\Leftrightarrow75-5a+27=2\)
\(\Leftrightarrow102-5a=2\)
\(\Rightarrow a=20\)
b) \(x^3+ax^2+x+b=\left(x^2-x+2\right).\left(x+m\right)\)(Trong đó m là số nguyên)
\(\Leftrightarrow x^3+ax^2+x+b=x^3+x^2.\left(m-1\right)-mx+2m\)
Sử dụng phương pháp đồng nhất hệ số ta có:
\(\hept{\begin{cases}ax^2=m-1\\x=-mx\\2m=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=m-1\\m=-1\\2m=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-2\\b=-2\end{cases}}\Leftrightarrow a=b=-2\)
Áp dụng định lý Bezout ta được:
f(x)f(x)chia cho x+1 dư 2 ⇒f(−1)=2⇒f(−1)=4
Vì bậc của đa thức chia là 3 nên f(x)=(x+1)(x2+1)q(x)+ax2+bx+cf(x)=(x+1)(x2+1)q(x)+ax2+bx+c
=(x2+1)(x+1)q(x)+(ax2+a)−a+bx+c=(x2+1)(x+1)q(x)+(ax2+a)−a+bx+c
=(x2+1)(x+1)q(x)+a(x2+1)+bx+c−a=(x2+1)(x+1)q(x)+a(x2+1)+bx+c−a
=(x2+1)[(x+1)q(x)+a]+bx+c−a=(x2+1)[(x+1)q(x)+a]+bx+c−a
Vì f(−1)=4f(−1)=4nên a−b+c=4(1)a−b+c=4(1)
Vì f(x) chia cho x2+1x2+1dư 2x+3 nên
\hept{b=2c−a=3(2)\hept{b=2c−a=3(2)
Từ (1) và (2) ⇒\hept⎧⎨⎩a+c=6b=2c−a=3⇔\hept⎧⎪⎨⎪⎩a=32b=2c=92⇒\hept{a+c=6b=2c−a=3⇔\hept{a=32b=2c=92
Vậy dư f(x) chia cho (x+1)(x2+1)(x+1)(x2+1)là 32x2+2x+12