\(x^{27}+x^9+x^3+1\)cho \(x^2-1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2018

vì đa thức chia có bậc 2 nên dư có bậc 1 dạng ax+b. Do đó

f(x)=\(\left(x^2-1\right).q\left(x\right)+ax+b=\left(x-1\right)\left(x+1\right).q\left(x\right)+ax+b\left(vớimoijx\right)\)

với x=1 =>a+b=1+1+1+1=4

với x=-1=>-a+b=-2

do đó a+b-a+b=4+(-2)=2

=>2b=2=>b=1

a=3

vậy đa thức dư là 3x+1

6 tháng 3 2018

a+b=1+1+1+1 =1 ở đâu ra thế bạn

NV
20 tháng 4 2019

\(P\left(x\right)=x^{27}+x^9+x^3+x\)

\(Q\left(x\right)=x^2-1\)

Do Q(x) bậc 2 nên số dư cao nhất là bậc, 1 giả sử \(P\left(x\right)=Q\left(x\right).R\left(x\right)+ax+b\)

\(\Leftrightarrow x^{27}+x^9+x^3+x=\left(x^2-1\right)R\left(x\right)+ax+b\)

Thay \(x=1\Rightarrow4=a+b\)

Thay \(x=-1\Rightarrow-4=-a+b\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=4\\-a+b=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=0\end{matrix}\right.\) \(\Rightarrow\) P(x) chia Q(x) dư \(4x\)

31 tháng 8 2020

Đề có sao không bạn \(1\sqrt{2}=\sqrt{2}\)

Thấy hơi lạ, toán lớp 8 mak dùng căn như thế này thì lần đầu gặp . Nhưng mk vẫn làm cái dạng, ví dụ bạn viết sai đề thì có thể nhìn dạng mak làm lại 

Ta có đa thức chia g(x) là đa thức bậc 2 nên đa thức dư là đa thức có bậc không lớn hơn 1 . 

Do đó gọi đa thức dư là ax+b ( lưu ý ở đây không thêm điều kiện a khác 0 do ax+b cs thể là đa thức bậc 0)
Ta có 

\(x^{27}+x^9+x^3+x=\left(x^2-\sqrt{2}\right)q\left(x\right)+ax+b\)

\(x^{27}+x^9+x^3+x=\left(x-\sqrt[4]{2}\right)\left(x+\sqrt[4]{2}\right)q\left(x\right)+ax+b\left(1\right)\)

Nếu \(x=\sqrt[4]{2}\)thì (1) trở thành : \(5\cdot\sqrt[4]{2}+65\cdot\left(\sqrt[4]{2}\right)^3=a\cdot\sqrt[4]{2}+b\)

Nếu \(x=-\sqrt[4]{2}\)thì (1) trở thành \(-5\cdot\sqrt[4]{2}-65\cdot\left(\sqrt[4]{2}\right)^3=-a\cdot\sqrt[4]{2}+b\)

Từ đó ta suy ra được .\(a=5+65\cdot\sqrt{2}\)\(b=0\)

Vậy đa thức dư là \(\left(5+65\cdot\sqrt{2}\right)x\)

Lưu ý : mấy cái phép tính căn thức thì bạn tự search google coi nhé. Nếu mình làm ra thì dài lắm  

26 tháng 6 2018

Ta có : \(x^4+x^2+1=(x^2+1)^2-x^2=(x^2+x+1)(x^2-x+1)\)

Số dư của phép chia đa thức \(f(x)\)cho x4 + x2 + 1 là đa thức có bậc thấp hơn , tức là \(ax^3+bx^2+cx+d\)

Ta có : \(f(x)=(x^4+x^2+1)g(x)+ax^3+bx^2+cx+d\)

\(=(x^2+x+1)(x^2-x+1)g(x)+(x^2+x+1)(ax+b-a)+(c-d)x+d+a-b\)

\(=(x^2+x+1)[(x^2-x+1)g(x)+ax+b-a]+(c-b)x+d+a-b\)

Vậy nên : \(\hept{\begin{cases}c-d=-1\\d+a-b=1\end{cases}}\)

Ta cũng có :

\(f(x)=(x^4+x^2+1)g(x)+ax^3+bx^2+cx+d\)

\(=(x^2-x+1)(x^2+x+1)g(x)+(x^2-x+1)(ax+b+a)+(c+b)x+d-a-b\)

Vậy nên : \(\hept{\begin{cases}c+d=3\\d-a-b=5\end{cases}}\)

Từ 1 và 2 , ta có : \(\hept{\begin{cases}c-d=-1\\c+d=3\end{cases}}\)và \(\hept{\begin{cases}d-b+a=1\\d-b-a=5\end{cases}}\)

Vậy nên : \(\hept{\begin{cases}c=1\\b=2\end{cases}}\)và \(\hept{\begin{cases}d-b=3\\a=-2\end{cases}\Rightarrow}\hept{\begin{cases}d=5\\a=-2\end{cases}}\)

Vậy thì đa thức dư cần tìm là : -2x3 + 2x2 + x + 5

22 tháng 1 2018

Ta có \(x^4+x^2+1=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)

Số dư của phép chia đa thức f(x) cho x4 + x2 + 1 là đa thức có bậc thấp hơn, tức là \(ax^3+bx^2+cx+d\)

Ta có \(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)

\(=\left(x^2+x+1\right)\left(x^2-x+1\right)g\left(x\right)+\left(x^2+x+1\right)\left(ax+b-a\right)+\left(c-b\right)x+d+a-b\)

\(=\left(x^2+x+1\right)\left[\left(x^2-x+1\right)g\left(x\right)+ax+b-a\right]+\left(c-b\right)x+d+a-b\)

Vậy nên \(\hept{\begin{cases}c-b=-1\\d+a-b=1\end{cases}}\)

Ta cũng có:

\(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)g\left(x\right)+\left(x^2-x+1\right)\left(ax+b+a\right)+\left(c+b\right)x+d-a-b\)

Vậy nên \(\hept{\begin{cases}c+b=3\\d-a-b=5\end{cases}}\)

Từ (1) và (2) ta có: \(\hept{\begin{cases}c-b=-1\\c+b=3\end{cases}}\)  và \(\hept{\begin{cases}d-b+a=1\\d-b-a=5\end{cases}}\)

Vậy nên \(\hept{\begin{cases}c=1\\b=2\end{cases}}\) và \(\hept{\begin{cases}d-b=3\\a=-2\end{cases}\Rightarrow\hept{\begin{cases}d=5\\a=-2\end{cases}}}\)

Vậy thì đa thức dư cần tìm là -2x3 + 2x2 + x + 5

22 tháng 7 2018

Phần (c-b)x sai phải là (c-b+a-ax)x