\(\left(x^2+4x+3\right)\left(x^2+12x+35\right)+2021\) chia cho 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2020

( x2 + 4x + 3 )( x2 + 12x + 35 ) + 2021

= ( x2 + x + 3x + 3 )( x2 + 5x + 7x + 35 ) + 2021

= [ x( x + 1 ) + 3( x + 1 ) ][ x( x + 5 ) + 7( x + 5 ) ] + 2021

= ( x + 1 )( x + 3 )( x + 5 )( x + 7 ) + 2021

= [ ( x + 1 )( x + 7 ) ][ ( x + 3 )( x + 5 ) ] + 2021

= ( x2 + 8x + 7 )( x2 + 8x + 15 ) + 2021 (1)

Đặt t = x2 + 8x + 11

(1) <=> ( t - 4 )( t + 4 ) + 2021

       = t2 - 16 + 2021

       = t2 + 2005

       = ( x2 + 8x + 11 )2 + 2005

Ta có : ( x2 + 8x + 11 )2 chia hết cho ( x2 + 8x + 11 )

2005 có bậc 0 , x2 + 8x + 11 có bậc 2 nên không thể chia

=> ( x2 + 8x + 11 )2 + 2005 chia cho ( x2 + 8x + 11 ) dư 2005

hay [ ( x2 + 4x + 3 )( x2 + 12x + 35 ) + 2021 ] chia ( x2 + 8x + 11 ) dư 2005

11 tháng 10 2020

a,Gọi Đa thức dư là ax+b,thương là Q(x)

Ta có:f(x)=1+x+x19+x199+x2019

              =(1-x2)Q(x)+Q(x)+b

=>1+x+x19+x199+x2019=(1-x)(1+x)Q(x)+ax+b  (1)

Vì (1) đúng với mọi x,thay x=1 và x=-1 ta đc:

1+1+119+1199+12019=a+b

<=>a+b=5(*)

Với x=1 ta có:

1+(-1)+(-1)99+(-1)199+(-1)2019=a(-1)+b

<=>-a+b=-3(**)

Cộng (*) và (**) vế theo vế ta đc:2b=2=>b=1

Thay b=1 vào (*) ta đc:a=4

Vậy đa thức dư là 4x+1

b,Ta có:(x+1)(x+3)(x+5)(x+7)+2019

=(x+1)(x+7)(x+5)(x+3)+2019

=(x2+8x+7)(x2+8x+15)+2019 

=(x2+8x+12-5)(x2+8x+12+3)+2019

=(x2+8x+12)2-2(x2+8x+12)-15+2019

=(x2+8x+12)2-2(x2+8x+12)+2004

2 tháng 3 2018

1) Ta có f(x) = (x - 2)g(x) + 2005

              f(x) = (x - 3)h(x) + 2006

Do đa thức x2 - 5x + 6 là đa thức bậc hai nên số dư sẽ là đa thức bậc nhất hoặc hạng tử tự do.

Giả sử f(x) = (x - 2)(x - 3)t(x) + ax + b

Ta có:  f(x) = (x - 2)(x - 3)t(x) + ax + b = (x - 2)[(x - 3)t(x) + a] + 2a + b , suy ra ra 2a + b = 2005

           f(x) = (x - 2)(x - 3)t(x) + ax + b = (x - 3)[(x - 2)t(x) + a] + 3a + b , suy ra ra 3a + b = 2006

Từ đó ta tìm được a = 1; b = 2003

Vậy f(x) chia cho x2 - 5x + 6 dư x + 2003.

3 tháng 3 2019

Ủa sao chự nhiên có f(x) ở đây. À mà nói vậy thì cũng sai, chứ câu này chỉ có fan KPOP mới hiểu!^-^

9 tháng 12 2018

a, 15x3y5z : 5x2y3 = 3xy2z.

b, 12x4y2 : ( - 9xy2 ) = \(\frac{3}{4}x^3\).

c, ( 30x4y3 - 25x2y3 - 3x4y4 ) : 5x2y3 = \(6x^2-5-\frac{3}{5}x^2y.\)

d, ( 4x4 - 8x2y2 + 12x5y ) : ( - 4x2 ) = -x2 + 2y2 - 3x3y.

19 tháng 9 2019

Cm: Ta có: 

a) A = x2 - 8x + 20 = (x2 - 8x + 16) + 4 = (x - 4)2 +  4 > 0 \(\forall\) x(vì (x - 4)2 \(\ge\)\(\forall\)x ; 4 > 0)

=> A luôn dương với mọi x

b) B = 4x2 - 12x + 11 = [(2x)2 - 12x + 9] + 2 = (2x - 3)2 + 2 > 0 \(\forall\)x (vì (2x - 3)2 \(\ge\)\(\forall\)x; 2 > 0)

=> B luôn dương với mọi x

c) C = x2 - x + 1 = (x2 - x + 1/4) + 3/4 = (x -  1/2)2 + 3/4 > 0 \(\forall\)x (vì (x - 1/2)2 \(\ge\)\(\forall\)x; 3/4 > 0)

=> C luôn dương với mọi x

* Tìm x

3(x + 2)2 + (2x - 1)2 - 7(x + 3)(x - 3) = 36

=> 3(x2 + 4x + 4) + 4x2 - 4x + 1 - 7(x2 - 9) = 36

=> 3x2 + 12x + 12 + 4x2 - 4x + 1 - 7x2 + 63 = 36

=> 8x + 76 = 36

=> 8x = 36 - 76

=> 8x = -40

=> x = -40 : 8 = -5

31 tháng 8 2020

Đề có sao không bạn \(1\sqrt{2}=\sqrt{2}\)

Thấy hơi lạ, toán lớp 8 mak dùng căn như thế này thì lần đầu gặp . Nhưng mk vẫn làm cái dạng, ví dụ bạn viết sai đề thì có thể nhìn dạng mak làm lại 

Ta có đa thức chia g(x) là đa thức bậc 2 nên đa thức dư là đa thức có bậc không lớn hơn 1 . 

Do đó gọi đa thức dư là ax+b ( lưu ý ở đây không thêm điều kiện a khác 0 do ax+b cs thể là đa thức bậc 0)
Ta có 

\(x^{27}+x^9+x^3+x=\left(x^2-\sqrt{2}\right)q\left(x\right)+ax+b\)

\(x^{27}+x^9+x^3+x=\left(x-\sqrt[4]{2}\right)\left(x+\sqrt[4]{2}\right)q\left(x\right)+ax+b\left(1\right)\)

Nếu \(x=\sqrt[4]{2}\)thì (1) trở thành : \(5\cdot\sqrt[4]{2}+65\cdot\left(\sqrt[4]{2}\right)^3=a\cdot\sqrt[4]{2}+b\)

Nếu \(x=-\sqrt[4]{2}\)thì (1) trở thành \(-5\cdot\sqrt[4]{2}-65\cdot\left(\sqrt[4]{2}\right)^3=-a\cdot\sqrt[4]{2}+b\)

Từ đó ta suy ra được .\(a=5+65\cdot\sqrt{2}\)\(b=0\)

Vậy đa thức dư là \(\left(5+65\cdot\sqrt{2}\right)x\)

Lưu ý : mấy cái phép tính căn thức thì bạn tự search google coi nhé. Nếu mình làm ra thì dài lắm  

1, \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)

\(\Leftrightarrow-4x^2+28x+4x^3-20x=28x^2-13\)

\(\Leftrightarrow-32x^2+8x+4x^3-13=0\)( vô nghiệm )

2, \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)

\(\Leftrightarrow12x^3-7x^2-10x-7x^2-35x=-2x^2+11x-12+12x^3+2x^2\)

\(\Leftrightarrow12x^3-14x^2-45x=11x-12+12x^3\)

\(\Leftrightarrow-14x^2-56x-12=0\)( vô nghiệm )

20 tháng 8 2020

Mình làm riêng ra nhá , chứ nhiều quá nên thông cảm cho mình :))

1. \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)

=> \(-4x^2+28x+4x^3-20x=28x^2-13\)

=> \(-4x^2+4x^3+\left(28x-20x\right)=28x^2-13\)

=> \(-4x^2+4x^3+8x-28x^2+13=0\)

=> \(\left(-4x^2-28x^2\right)+4x^3+8x+13=0\)

=> \(-32x^2+4x^3+8x+13=0\)

=> vô nghiệm

2. \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)

=> \(4x^2\left(3x+2\right)-5x\left(3x+2\right)-7x\left(x+5\right)=-4\left(-2x+3\right)+x\left(-2x+3\right)+12x^3+2x^2\)

=> \(12x^3+8x^2-15x^2-10x-7x^2-35x=8x-12-2x^2+3x+12x^3+2x^2\)

=> \(12x^3+8x^2-15x^2-10x-7x^2-35x-8x+12+2x^2-3x-12x^3-2x^2=0\)

=> \(\left(12x^3-12x^3\right)+\left(8x^2-15x^2-7x^2+2x^2-2x^2\right)+\left(-10x-35x-8x-3x\right)+12=0\)

=> \(-14x^2-56x+12=0\)

=> .... tự tìm

Câu c dấu bằng chỗ nào ?