Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\)
Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{5^2}< \frac{1}{4.5}\)
...
\(\frac{1}{2014^2}< \frac{1}{2013.2014}\)
\(\Rightarrow B< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2013.2014}\)
\(\Rightarrow B< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(\Rightarrow B< \frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)
Vậy A<\(\frac{3}{4}\)
A<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)=\(\frac{2013}{2014}\)<\(\frac{3}{4}\)
a, \(10^6-5^7=5^6.2^6-5^6.5\)
\(=5^6.\left(2^6-5\right)=5^6.59⋮59\)
b,\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(2^n⋮2\Rightarrow2^n.5⋮10\Leftrightarrow3^n.10-2^n.5⋮10\)( Do \(3^n.10⋮10\))
c,\(=8^8.8^2-8^8.8-8^8\)
\(=8^8.\left(8^2-8-1\right)\)
\(=8^8.55⋮55.\)
a) 106 - 57 = 56.26 - 57 = 56.(26 -5) = 56.59 chia hết cho 59
b) 3n+2 - 2n+2 + 3n - 2n = 3n.(32 +1) - 2n.(4+1) = 3n.10 - 2n-1.2.5 = 3n.10 - 2n-1.10 = 10.(3n - 2n-1) chia hết cho 10
c) 810 - 89 - 88 = 88.(82 - 8-1) = 88.55 chia hết cho 55
a. Để \(A=\frac{2n-7}{n-5}\in Z\)thì \(n\in Z\)
\(A=\frac{2n-7}{n-5}=\frac{2n-10+3}{n-5}\)
\(=2+\frac{3}{n-5}\)
Để \(A\in Z\)thì \(\frac{3}{n-5}\)
\(\Rightarrow n-5\in\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{2;4;6;8\right\}\)
Câu a) \(2^3\)chia 7 dư 1 \(\Rightarrow2^{48}=\left(2^3\right)^{16}\)chia 7 dư 1. Vậy \(2^{50}\)chia 7 dư 4.
Câu b) \(1532=1533-1\)chia 9 dư -1 \(\Rightarrow1532^5\)chia 9 dư \(\left(-1\right)^5=-1\)
Vậy \(1532^5-1\)chia 9 dư -2, tức là chia 9 dư 7.
Chúc bạn học tốt!
Mình làm nhanh nên gõ lộn ấy mà. Nói chung bạn cứ vận dụng kiến thức này là làm được
a chia b dư m thì \(a^n\)chia b dư \(m^n\).
Lúc đó bị gọi xuống ăn cơm nên hơi vội í bạn thông cảm nhé.