\(\sqrt{2-6x}\)  

b) \(\sqrt{3x-12}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2018

a) \(2-6x\ge0\Rightarrow x\le\frac{1}{3}\)

b) \(3x-12\ge0\Rightarrow x\ge4\)

c) \(\hept{\begin{cases}x+3\ge0\\2x+1\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-3\\x\ge-\frac{1}{2}\end{cases}}\Rightarrow x\ge-\frac{1}{2}\)

d) \(\hept{\begin{cases}x^2-25\ne0\\x-4\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne5\\x\ge4\end{cases}}\)

e) \(x^2-8x+7\ge0\)

<=> \(\left(x-1\right)\left(x-7\right)\ge0\)

<=> \(\hept{\begin{cases}x\ge1\\x\ge7\end{cases}}\Rightarrow x\ge7\)                         or                           \(\hept{\begin{cases}x\le1\\x\le7\end{cases}}\Rightarrow x\le1\)

a: ĐKXĐ: -6x+2>=0

=>-6x>=-2

hay x<=1/3

b: ĐKXĐ: 3x-12>=0

=>x>=4

c: \(\Leftrightarrow\left\{{}\begin{matrix}x+3>=0\\2x+1>=0\end{matrix}\right.\Leftrightarrow x>=-\dfrac{1}{2}\)

d: ĐKXĐ: \(\left\{{}\begin{matrix}x^2-25< >0\\x+4>=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-4\\x< >5\end{matrix}\right.\)

e: ĐKXĐ: (x-7)(x-1)>=0

=>x>=7 hoặc x<=1

10 tháng 8 2017

a, dk \(1-16x^2\ge0\Leftrightarrow\left(1-4x\right)\left(1+4x\right)\ge0\)

        \(\Leftrightarrow-\frac{1}{4}\le x\le\frac{1}{4}\)

b tuong tu

c, \(\sqrt{\left(x-3\right)\left(5-x\right)}\ge0\Leftrightarrow\left(x-3\right)\left(5-x\right)\ge0\Leftrightarrow3\le x\le5\)

d.\(\sqrt{x^2-x+1}>0\)

ma \(x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

suy ra thoa man vs moi x

AH
Akai Haruma
Giáo viên
2 tháng 3 2020

Lời giải:
a)

\(\left\{\begin{matrix} x\geq 0\\ 3-\sqrt{x}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\leq 9\end{matrix}\right.\Leftrightarrow 0\leq x\leq 9\)

b)

\(\left\{\begin{matrix} x-1\geq 0\\ 2-\sqrt{x-1}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x-1\leq 4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\leq 5\end{matrix}\right.\)

\(\Leftrightarrow 1\leq x\leq 5\)

c)

\(-7+3x>0\Leftrightarrow x>\frac{7}{3}\)

d)

\(\left\{\begin{matrix} x-1\geq 0\\ 5-x>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x< 5\end{matrix}\right.\Leftrightarrow 1\leq x< 5\)

e) \(x\in\mathbb{R}\)

f) \(\left\{\begin{matrix} 2-x>0\\ x-5\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x< 2\\ x\geq 5\end{matrix}\right.\) (vô lý)

Do đó không tồn tại $x$ để hàm số tồn tại

g)

\(\left[\begin{matrix} \left\{\begin{matrix} 3x-6-2x\geq 0\\ 1-x>0\end{matrix}\right.\\ \left\{\begin{matrix} 3x-6-2x\leq 0\\ 1-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\geq 6\\ x< 1\end{matrix}\right.(\text{vô lý})\\ \left\{\begin{matrix} x\leq 6\\ x>1 \end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow 1< x\leq 6\)

18 tháng 7 2018

a)   ĐKXĐ:   \(5x-7\ge0\) \(\Leftrightarrow\)\(x\ge\frac{7}{5}\)

b)   ĐKXĐ:   \(2x^2+x\ge0\)\(\Leftrightarrow\) \(x\left(2x+1\right)\ge0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x\ge0\\x\le-\frac{1}{2}\end{cases}}\)

c)   ĐKXĐ:   \(4-7x\ge0\)\(\Leftrightarrow\)\(x\le\frac{4}{7}\)

d)   ĐKXĐ:   \(x^3+x\ge0\) \(\Leftrightarrow\)\(x\left(x^2+1\right)\ge0\)\(\Leftrightarrow\)\(x\ge0\)

e)  ĐKXĐ:  \(\frac{x-5}{2x+1}\ge0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x\ge5\\x< -\frac{1}{2}\end{cases}}\)

f)  ĐKXĐ:  \(\frac{3-2x}{3x-2}\ge0\) \(\Leftrightarrow\)\(\frac{2}{3}< x\le\frac{3}{2}\)

NV
23 tháng 9 2019

a/ \(1-16x^2\ge0\Rightarrow x^2\le16\Rightarrow-\frac{1}{4}\le x\le\frac{1}{4}\)

b/ \(\left\{{}\begin{matrix}x^2-3\ge0\\x^2-3\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{matrix}\right.\\x\ne\pm2\end{matrix}\right.\)

c/ \(8x-x^2-15\ge0\Rightarrow3\le x\le5\)

d/ Hàm số xác định với mọi x

e/ \(\left\{{}\begin{matrix}x\ge\frac{1}{2}\\x\ne1\end{matrix}\right.\)

f/ \(\left\{{}\begin{matrix}-4\le x\le4\\x>-\frac{1}{2}\\\left[{}\begin{matrix}x\ge4+\sqrt{2}\\x\le4-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow-\frac{1}{2}< x\le4-\sqrt{2}\)

17 tháng 8 2019

1 + 1=

Ai có nhu cầu tình dục cao thì liên hẹ vs e nha, e làm cho, 20k thôi, e cần tiền chữa bệnh cho mẹ

25 tháng 7 2019

MN ƠI GIÚP E