\(\sqrt{1-4x^2}\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2015

a) Biểu thức có nghĩa khi

\(1-4x^2\ge0\)

\(\Leftrightarrow1\ge4x^2\)

\(\Leftrightarrow4x^2\le1\)

\(\Leftrightarrow\sqrt{4x^2}\le\sqrt{1}\)

\(\Leftrightarrow\)/2x/ nhỏ hơn hoặc bằng 1 ("/" là dấu trị tuyệt đối)

\(\Leftrightarrow-1\le2x\le1\)

b. Biểu thức có nghĩa khi \(x^2-x+1\ge0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0\)

Luôn đúng với mọi x thuộc R

c. Biểu thức có nghĩa khi \(4x-x^2-5\ge0\)

\(\Leftrightarrow-x^2+4x-4-1\ge0\)

\(\Leftrightarrow-\left(x-2\right)^2-1\ge0\)

\(\Leftrightarrow-\left(x-2\right)^2\ge1\)(vô lý)

Suy ra không có giá trị nào của x để biểu thức xác định

3 tháng 8 2019

\(a,\frac{1}{\sqrt{5x+15}}\)

Để biểu thức trên có nghĩa :

\(\Rightarrow\sqrt{5x+15}\ge0\)

\(\Rightarrow5\left(x+3\right)\ge0\)

\(\Rightarrow x\ge-3\)

Vậy....

19 tháng 5 2017

+)\(A=\sqrt{x^2-3}\) ,Để biểu thức có nghĩa

\(=>x^2-3>=0< =>x^2>=3.\)\(< =>-\sqrt{3}< =x< =\sqrt{3}\)

+)\(B=\frac{1}{\sqrt{x^2}+4x-5}\)

xét 2 th 

th1)x>=0

=>\(B=\frac{1}{x+4x-5}=\frac{1}{5x-5}\)

để biểu thức có nghĩa =>\(5x-5\)khác 0<=>x khác 1

th2>x<0

=>\(B=\frac{1}{-x+4x-5}=\frac{1}{3x-5}\)

biểu thức có nghĩa =>3x-5 khác 0<=>x khác \(\frac{5}{3}\)

vậy với x khác 1, \(\frac{5}{3}\) thì B có nghĩa

+) \(C=\frac{1}{\sqrt{x-\sqrt{2x-1}}}\)

để C có nghĩa 

=>\(\sqrt{x-\sqrt{2x-1}}>0< =>x>\sqrt{2x-1}\),\(2x-1>=0< =>x^2>2x-1,x>=\frac{1}{2}\)(1)

=>\(x^2-2x+1>0< =>\left(x-1\right)^2>0=>\orbr{\begin{cases}x>1\\x< 1\end{cases}}\)(2)

từ (1) và (2)=>x>1

vậy với x>1 thì C có nghĩa

+)D=\(\frac{1}{1-\sqrt{x^2}-3}\)

xét 2 th

th1)x>=0

=>\(D=\frac{1}{1-x-3}=\frac{1}{-x-2}\)

để D có nghĩa =>-x-2 khác 0<=>x khác -2

th2)x<0

=>\(D=\frac{1}{1-\left(-x\right)-3}=\frac{1}{x-2}\)

Để D có nghĩa => x-2 khác 0<=> x khác 2

Vậy với x khác 2,-2 thì D có nghĩa

19 tháng 5 2017

mình muốn trả lời nhưng mình ko biết

1 tháng 10 2020

a) đk: \(3x+1\ge0\Rightarrow x\ge-\frac{1}{3}\)

b) đk: \(\hept{\begin{cases}x\ge0\\1-\sqrt{x}\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

c) đk: \(25-x^2\ge0\Leftrightarrow25\ge x^2\Rightarrow\left|x\right|< 5\)

d) đk: \(4x^2-4x+1\ne0\Rightarrow x\ne\frac{1}{2}\)

25 tháng 7 2017

a) Để A có nghĩa \(\Leftrightarrow4x^2-1\ge0\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1\ge0\\2x+1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1\le0\\2x+1\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ge-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\x\le-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{1}{2}\\x\le-\dfrac{1}{2}\end{matrix}\right.\)

Vậy A có nghĩa khi \(x\ge\dfrac{1}{2}\) hoặc \(x\le-\dfrac{1}{2}\)

b) Ta có 2x2 + 4x + 5 = 2(x2 + 2x + 1) + 3 = 2(x + 1)2 + 3 > 0 với mọi x.

Vậy B có nghĩa với mọi x

c) Để C có nghĩa \(\Leftrightarrow2x-x^2>0\Leftrightarrow x\left(2-x\right)>0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\2-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\2-x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x>2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow0< x< 2\)

Vậy C có nghĩa khi 0 < x < 2

d) Để D có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{3}{x}>0\\-3x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x^2+3}{x}>0\\-3x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x\le0\end{matrix}\right.\) \(\Rightarrow\) không có giá trị nào của x thỏa mãn điều kiện này.

Vậy không có giá trị của x để D có nghĩa

6 tháng 6 2019

\(b,\sqrt{\frac{2x-1}{x+3}}\)

\(Đk:\)\(x+3\ne0\Rightarrow x\ne-3\)

Và \(\frac{2x-1}{x+3}\ge0\)

Khi \(\frac{2x-1}{x+3}=0\Rightarrow2x-1=0\)

\(\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)

Khi \(\frac{2x-1}{x+3}>0\)\(\Rightarrow\orbr{\begin{cases}2x-1>0;x+3>0\\2x-1< 0;x+3< 0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x>\frac{1}{2};x>-3\\x< \frac{1}{2};x< -3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x< -3\end{cases}}\)

Vậy căn thức xác định khi \(x\ge\frac{1}{2};x< -3\)

NV
1 tháng 10 2020

ĐKXĐ:

a/ \(3x+1\ge0\Leftrightarrow x\ge-\frac{1}{3}\)

b/ \(\left\{{}\begin{matrix}x\ge0\\1-\sqrt{x}\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

c/ \(25-x^2\ge0\Rightarrow-5\le x\le5\)

d/ \(4x^2-4x+1>0\Leftrightarrow\left(2x-1\right)^2>0\Leftrightarrow x\ne\frac{1}{2}\)

14 tháng 6 2019

a, Biểu thức \(2-\sqrt{1-4x}\) có nghĩa : \(1-4x\ge0\Rightarrow x\le\frac{1}{4}\)

\(b,\sqrt{2x^2+1}+\frac{2}{3-4x}\)

\(\Rightarrow\hept{\begin{cases}2x^2+1>0\\3-4x\ne0\end{cases}}\Rightarrow\hept{\begin{cases}2x^2>-1\\4x\ne3\end{cases}}\Rightarrow\hept{\begin{cases}x^2>-\frac{1}{2}\\x\ne\frac{3}{4}\end{cases}}\Rightarrow x\ne\frac{3}{4}\)

\(c,\sqrt{\frac{-3}{2x-2}}\) \(\Rightarrow\hept{\begin{cases}\frac{-3}{2x-2}\ge0\\2x-2\ne0\end{cases}}\Rightarrow2x-2< 0\Rightarrow x< 1\)

d, TT