Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,\sqrt{\frac{2x-1}{x+3}}\)
\(Đk:\)\(x+3\ne0\Rightarrow x\ne-3\)
Và \(\frac{2x-1}{x+3}\ge0\)
Khi \(\frac{2x-1}{x+3}=0\Rightarrow2x-1=0\)
\(\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)
Khi \(\frac{2x-1}{x+3}>0\)\(\Rightarrow\orbr{\begin{cases}2x-1>0;x+3>0\\2x-1< 0;x+3< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>\frac{1}{2};x>-3\\x< \frac{1}{2};x< -3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x< -3\end{cases}}\)
Vậy căn thức xác định khi \(x\ge\frac{1}{2};x< -3\)
Lời giải:
a) ĐKXĐ: $5-4x\geq 0\Leftrightarrow x\leq \frac{5}{4}$
b) ĐKXĐ: \(\left\{\begin{matrix} 3x-4\neq 0\\ \frac{-5}{3x-4}\geq 0\end{matrix}\right.\Leftrightarrow 3x-4< 0\Leftrightarrow x< \frac{4}{3}\)
c) ĐKXĐ: $x^2+7\geq 0\Leftrightarrow x\in\mathbb{R}$
d)
ĐKXĐ: \(x^2-4x+4\geq 0\Leftrightarrow (x-2)^2\geq 0\Leftrightarrow x\in\mathbb{R}\)
n)
\(\left\{\begin{matrix} x+1\neq 0\\ \frac{3x-5}{x+1}\geq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} 3x-5\geq 0\\ x+1>0\end{matrix}\right.\\ \left\{\begin{matrix} 3x-5\leq 0\\ x+1< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x\geq \frac{5}{3}\\ x< -1\end{matrix}\right.\)
m)
ĐKXĐ: \(\left\{\begin{matrix} 3x-1\neq 0\\ \frac{x^2}{3x-1}\geq 0\end{matrix}\right.\Leftrightarrow 3x-1>0\Leftrightarrow x>\frac{1}{3}\)
g)
ĐKXĐ: \(\left\{\begin{matrix} x-1\geq 0\\ 5-2x>0\end{matrix}\right.\Leftrightarrow 1\leq x< \frac{5}{2}\)
a) Biểu thức có nghĩa khi
\(1-4x^2\ge0\)
\(\Leftrightarrow1\ge4x^2\)
\(\Leftrightarrow4x^2\le1\)
\(\Leftrightarrow\sqrt{4x^2}\le\sqrt{1}\)
\(\Leftrightarrow\)/2x/ nhỏ hơn hoặc bằng 1 ("/" là dấu trị tuyệt đối)
\(\Leftrightarrow-1\le2x\le1\)
b. Biểu thức có nghĩa khi \(x^2-x+1\ge0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0\)
Luôn đúng với mọi x thuộc R
c. Biểu thức có nghĩa khi \(4x-x^2-5\ge0\)
\(\Leftrightarrow-x^2+4x-4-1\ge0\)
\(\Leftrightarrow-\left(x-2\right)^2-1\ge0\)
\(\Leftrightarrow-\left(x-2\right)^2\ge1\)(vô lý)
Suy ra không có giá trị nào của x để biểu thức xác định
a: \(2x^2-4x+5=2\left(x^2-2x+1+\dfrac{3}{2}\right)=2\left(x-1\right)^2+3>0\forall x\)
\(2x^2+4x+2=2\left(x+1\right)^2>=0\forall x\)
Do đó: Hai căn thức xác định với mọi x
b: \(\Leftrightarrow-4x+5>4x+2\)
=>-8x>-3
=>x<3/8
ĐKXĐ:\(x-\left|x-2\right|\ge0\Leftrightarrow\left|x-2\right|\le x\)
a)Để PT được XĐ thì \(-2x-3\ge0\)
\(\Leftrightarrow-2x\ge3\)
\(\Leftrightarrow x\ge-\frac{3}{2}\)
b)Để PT được XĐ thì \(-\frac{3}{4+x}\ge0\)
Mà -3 < 0
\(\Leftrightarrow4+x< 0\)
\(\Leftrightarrow x< -4\)
c)\(\)Để PT được XĐ thì \(\frac{1}{4x^2-4x+1}\ge0\)
Mà 0 < 1
\(\Leftrightarrow0< 4x^2-4x+1\)
\(\Leftrightarrow0< \left(2x-1\right)^2\)
\(\Leftrightarrow0< 2x-1\)
\(\Leftrightarrow\frac{1}{2}< x\)
\(-4x^2+4x-1\ge0\)
\(\Leftrightarrow-\left(2x-1\right)^2\ge0\)
\(\Rightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)
Vậy căn thức chỉ xác định tại duy nhất \(x=\frac{1}{2}\)