Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, dk \(1-16x^2\ge0\Leftrightarrow\left(1-4x\right)\left(1+4x\right)\ge0\)
\(\Leftrightarrow-\frac{1}{4}\le x\le\frac{1}{4}\)
b tuong tu
c, \(\sqrt{\left(x-3\right)\left(5-x\right)}\ge0\Leftrightarrow\left(x-3\right)\left(5-x\right)\ge0\Leftrightarrow3\le x\le5\)
d.\(\sqrt{x^2-x+1}>0\)
ma \(x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
suy ra thoa man vs moi x
a/ \(1-16x^2\ge0\Rightarrow x^2\le16\Rightarrow-\frac{1}{4}\le x\le\frac{1}{4}\)
b/ \(\left\{{}\begin{matrix}x^2-3\ge0\\x^2-3\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{matrix}\right.\\x\ne\pm2\end{matrix}\right.\)
c/ \(8x-x^2-15\ge0\Rightarrow3\le x\le5\)
d/ Hàm số xác định với mọi x
e/ \(\left\{{}\begin{matrix}x\ge\frac{1}{2}\\x\ne1\end{matrix}\right.\)
f/ \(\left\{{}\begin{matrix}-4\le x\le4\\x>-\frac{1}{2}\\\left[{}\begin{matrix}x\ge4+\sqrt{2}\\x\le4-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow-\frac{1}{2}< x\le4-\sqrt{2}\)
Lời giải:
a)
\(\left\{\begin{matrix} x\geq 0\\ 3-\sqrt{x}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\leq 9\end{matrix}\right.\Leftrightarrow 0\leq x\leq 9\)
b)
\(\left\{\begin{matrix} x-1\geq 0\\ 2-\sqrt{x-1}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x-1\leq 4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\leq 5\end{matrix}\right.\)
\(\Leftrightarrow 1\leq x\leq 5\)
c)
\(-7+3x>0\Leftrightarrow x>\frac{7}{3}\)
d)
\(\left\{\begin{matrix} x-1\geq 0\\ 5-x>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x< 5\end{matrix}\right.\Leftrightarrow 1\leq x< 5\)
e) \(x\in\mathbb{R}\)
f) \(\left\{\begin{matrix} 2-x>0\\ x-5\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x< 2\\ x\geq 5\end{matrix}\right.\) (vô lý)
Do đó không tồn tại $x$ để hàm số tồn tại
g)
\(\left[\begin{matrix} \left\{\begin{matrix} 3x-6-2x\geq 0\\ 1-x>0\end{matrix}\right.\\ \left\{\begin{matrix} 3x-6-2x\leq 0\\ 1-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\geq 6\\ x< 1\end{matrix}\right.(\text{vô lý})\\ \left\{\begin{matrix} x\leq 6\\ x>1 \end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow 1< x\leq 6\)
bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\)
Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)
\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-1}{\sqrt{x}+1}\)
\(a,\)\(\frac{2}{\sqrt{x^2-x+1}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x^2-x+1\ge0\\x^2-x+1\ne0\end{cases}\Rightarrow x^2-x+1>0}\)
Mà \(x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)với \(\forall x\)
\(\Rightarrow\)Biểu thức luôn được xác định với mọi x
A=\(\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)
=\(\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
=\(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x-2}}\)
Vậy A=\(\frac{\sqrt{x}}{\sqrt{x}-2}\)vs x\(\ge0;x\ne4\)
C=\(\left(\frac{1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\times\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{1+x}{\sqrt{x}}\)
Vậy C=\(\frac{1+x}{\sqrt{x}}\)vs x>0
mình giúp bài 3 cho
\(\sqrt{25x-125}-3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=6\left(ĐKXĐ:x\ge5\right)\)
\(< =>\sqrt{25\left(x-5\right)}-3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9\left(x-5\right)}=6\)
\(< =>\sqrt{25}.\sqrt{x-5}-3\frac{\sqrt{x-5}}{\sqrt{9}}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=6\)
\(< =>5.\sqrt{x-5}-3.\frac{\sqrt{x-5}}{3}-\frac{1}{3}.3.\sqrt{x-5}=6\)
\(< =>5.\sqrt{x-5}-\sqrt{x-5}-\sqrt{x-5}=6\)
\(< =>3\sqrt{x-5}=6< =>\sqrt{x-5}=2\)
\(< =>x-5=4< =>x=4+5=9\left(tmđk\right)\)
a/ 2x-x2>0
\(\Leftrightarrow\) x(2-x)>0
\(\Leftrightarrow\) 0<x<2
b/ \(\left\{{}\begin{matrix}x-3>0\\5-x>0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x>3\\x< 5\end{matrix}\right.\)\(\Leftrightarrow\) 3<x<5
c/ x2-5x+6>0
\(\Leftrightarrow\) (x-3)(x-2)>0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x>3\\x< 2\end{matrix}\right.\)
d/ \(\left\{{}\begin{matrix}6x-1>0\\x+3>0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x>\frac{1}{6}\\x>-3\end{matrix}\right.\)
\(\Leftrightarrow\) x > \(\frac{1}{6}\)
a) Để \(\frac{1}{1-\sqrt{x-2}}\)xác định thì \(1-\sqrt{x-2}\ne0\)
\(\Leftrightarrow\sqrt{x-2}\ne1\)
\(\Leftrightarrow x\ne3\)
ĐKXĐ: \(x\ne3\)
c) Để biểu thức xác định thì \(\hept{\begin{cases}x-2\ge0\\x+1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2\\x\ge-1\end{cases}}\)
ĐKXĐ:\(x\ge2\)