Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ của cả A và B : \(\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\)
\(A=\frac{\sqrt{x}+2}{\sqrt{x}-5}\)
\(B=\frac{x+3\sqrt{x}}{x-25}+\frac{1}{\sqrt{x}+5}\)
\(=\frac{x+3\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}+\frac{\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{x+4\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{x-\sqrt{x}+5\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+5\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}-5}\)
\(M=\frac{B}{A}=\frac{\frac{\sqrt{x}-1}{\sqrt{x}-5}}{\frac{\sqrt{x}+2}{\sqrt{x}-5}}=\frac{\sqrt{x}-1}{\sqrt{x}-5}\times\frac{\sqrt{x}-5}{\sqrt{x}+2}=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
ĐKXĐ của M : \(\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\)
\(M\times\left(\sqrt{x}+2\right)\ge3x-3\)
\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+2}\times\left(\sqrt{x}+2\right)\ge3x-3\)( ĐK : \(\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\))
\(\Leftrightarrow\sqrt{x}-1\ge3x-3\)
\(\Leftrightarrow3x-\sqrt{x}-3+1\ge0\)
\(\Leftrightarrow3x-\sqrt{x}-2\ge0\)
\(\Leftrightarrow3x-3\sqrt{x}+2\sqrt{x}-2\ge0\)
\(\Leftrightarrow3\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}+2\right)\ge0\)
Dễ dàng nhận thấy \(3\sqrt{x}+2\ge2>0\forall x\ge0\)
\(\Rightarrow\sqrt{x}-1\ge0\)
\(\Leftrightarrow x\ge1\)
Kết hợp với điều kiện => Với 0 ≤ x ≤ 1 thì thỏa mãn đề bài
a)
\(A=\left(\frac{1}{1-\sqrt{3}}-\frac{1}{1+\sqrt{3}}\right):\frac{1}{\sqrt{3}}\\ =\left(\frac{1+\sqrt{3}-1+\sqrt{3}}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}\right):\frac{1}{\sqrt{3}}\\ =\frac{2\sqrt{3}}{1-\left(\sqrt{3}\right)^2}:\frac{1}{\sqrt{3}}\\ =\frac{2\sqrt{3}}{-2}\cdot\sqrt{3}=-3\)
\(B=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{x-\sqrt{x}}\left(ĐK:x>0;x\ne1\right)\\ =\frac{\left(\sqrt{x}\right)^2}{\sqrt{x}\left(\sqrt{x-1}\right)}-\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ =\frac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ =\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}\)
b)
\(A=\frac{1}{6}B\Leftrightarrow-3=\frac{1}{6}\cdot\frac{\sqrt{x}-1}{\sqrt{x}}\\ \Leftrightarrow-18=\frac{\sqrt{x}-1}{\sqrt{x}}\Leftrightarrow-18\sqrt{x}=\sqrt{x}-1\\ \Leftrightarrow-19\sqrt{x}=-1\\ \Leftrightarrow\sqrt{x}=\frac{1}{19}\Rightarrow x=\frac{1}{361}\)
Vậy với x = \(\frac{1}{361}\)thì \(A=\frac{1}{6}B\)
Có gì sai mọi người góp ý nha!
1) \(A=\sqrt{17-12\sqrt{2}}=\sqrt{\left(2\sqrt{2}-3\right)^2}=3-2\sqrt{2}\)
\(B=\sqrt{4-2\sqrt{3}}+\sqrt{7-4\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(=\sqrt{3}-1+2-\sqrt{3}=1\)
\(C=\sqrt{63}-\sqrt{28}-\sqrt{7}=3\sqrt{7}-2\sqrt{7}-\sqrt{7}=0\)
\(D=\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}=\frac{2\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)}{3-1}=\frac{4}{2}=2\)
\(M=\left(\frac{1}{3-\sqrt{5}}-\frac{1}{3+\sqrt{5}}\right):\frac{5-\sqrt{5}}{\sqrt{5}-1}=\frac{3+\sqrt{5}-3+\sqrt{5}}{9-5}.\frac{\sqrt{5}-1}{\sqrt{5}\left(\sqrt{5}-1\right)}=\frac{2}{4}=\frac{1}{2}\)
A= \(\left(\frac{\sqrt{b}}{a-\sqrt{ab}}-\frac{\sqrt{a}}{\sqrt{ab}-b}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)
A = \(\left(\frac{\sqrt{b}}{\sqrt{a}.\sqrt{a}-\sqrt{ab}}-\frac{\sqrt{a}}{\sqrt{ab}-\sqrt{b}.\sqrt{b}}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)
A = \(\left(\frac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)
A = \(\left(\frac{b}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right)\left(a\sqrt{b}-b\sqrt{a}\right)\)
A = \(\left(\frac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right).\left(\sqrt{a}.\sqrt{a}.\sqrt{b}-\sqrt{b}.\sqrt{b}\sqrt{a}\right)\)
A = \(\left(\frac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right).\left(\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\right)\)
A = b-a
B = \(\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}}{a-\sqrt{a}}\right):\frac{\sqrt{a}+1}{a-1}\)
B = \(\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{a-1}-\frac{\sqrt{a}\left(a+\sqrt{a}\right)}{a^2-a}\right).\frac{a-1}{\sqrt{a}+1}\)
B = \(\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{a-1}-\frac{\sqrt{a}.\sqrt{a}\left(\sqrt{a}+1\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)
\(B=\left(\frac{a\sqrt{a}\left(\sqrt{a}+1\right)}{a\left(a-1\right)}-\frac{a\left(\sqrt{a}+1\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)
B= \(\left(\frac{a\sqrt{a}\left(\sqrt{a}+1\right)-a\left(\sqrt{a}+1\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)
B= \(\left(\frac{\left(\sqrt{a}+1\right)\left(a\sqrt{a}-a\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)
B = \(\frac{\left(\sqrt{a}+1\right)a\left(\sqrt{a}-1\right)}{a\left(a-1\right)}.\frac{a-1}{\sqrt{a}+1}\)
\(B=\frac{a\left(\sqrt{a}^2-1^2\right)}{a\left(a-1\right)}.\frac{a-1}{\sqrt{a}+1}\)
\(B=\frac{a\left(a-1\right)}{a\left(a-1\right)}.\frac{a-1}{\sqrt{a}+1}\)
B = \(\frac{a-1}{\sqrt{a}+1}\)
Bài 3:
a) \(PT\Leftrightarrow\sqrt{2x-3}=2\sqrt{x-1}\left(x\ge\frac{3}{2}\right)\)
\(\Leftrightarrow2x-3=4\left(x-1\right)\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\left(L\right)\)
PT vô nghiệm
b) \(PT\Leftrightarrow\left(x-1\right)=\sqrt{\left(x-1\right)^2}\left(x\ge1\right)\)
\(\Leftrightarrow x-1=\left|x-1\right|\). Do \(x\ge1\Rightarrow\left|x-1\right|=x-1\)
Suy ra PT <=> x - 1 = x -1
Vậy phương trình đúng với mọi nghiệm thõa mãn đk \(x\ge1\)
Bạn ơi thứ nhất là làm ơi đặt câu hỏi hẳn hoi không thừa không thiếu đây bạn bài 1, 2 còn không cách ra đề bài thừa nhiều gây khó đọc và làm có khi là sai sẽ mất công người giải và chú ý là một câu hỏi thì chỉ nên hỏi một bài hoặc cụm câu liên quan tới nhau nha
a) \(\sqrt{a-4}\)
\(ĐKXĐ:a\ge4\)
b) \(\sqrt{\frac{-3}{x-1}}\)
\(ĐKXĐ:x< 1\)
c) \(\sqrt{\frac{1-x}{-5}}\)
\(ĐKXĐ:x>1\)
a,đk a>4
b,x<1
c,x>1