Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(x\ge\dfrac{1}{3}\)
2/ \(\forall x\in R\)
3/ \(x\le\dfrac{5}{2}\)
4/ \(x\in\left(-\infty,-\sqrt{2}\right)\cup\left(\sqrt{2},+\infty\right)\)
5/ \(x>2\)
6/ \(x^2-3x+7\ge0\Rightarrow\forall x\in R\)
7/ \(x\ge\dfrac{1}{2}\)
8/ \(x\in\left(-\infty,-3\right)\cup\left(3,+\infty\right)\)
9/ \(\dfrac{x+3}{7-x}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\7-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\\7-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3\le x< 7\\7< x< -3\left(voli\right)\end{matrix}\right.\)
10/ \(\left\{{}\begin{matrix}6x-1\ge0\\x+3\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{6}\\x\ge-3\end{matrix}\right.\Leftrightarrow x\ge\dfrac{1}{6}\)
*Căn thức luôn không âm & mẫu chứa căn luôn dương
1) Để biểu thức \(\sqrt{3x-1}\) có nghĩa thì \(3x-1\ge0\Leftrightarrow3x\ge1\Leftrightarrow x\ge\dfrac{1}{3}\)
2) Ta có \(x^2\ge0\Leftrightarrow x^2+3\ge3>0\)
Vậy với mọi x thì biểu thức \(\sqrt{x^2+3}\) có nghĩa
3) Để biểu thức \(\sqrt{5-2x}\) có nghĩa thì \(5-2x\ge0\Leftrightarrow2x\le5\Leftrightarrow x\le\dfrac{5}{2}\)
4) Để biểu thức \(\sqrt{x^2-2}\) có nghĩa thì \(x^2-2\ge0\Leftrightarrow x^2\ge2\Leftrightarrow\)\(\left[{}\begin{matrix}x\ge\sqrt{2}\\x\le-\sqrt{2}\end{matrix}\right.\)
5) Để biểu thức \(\dfrac{1}{\sqrt{7x-14}}\) có nghĩa thì \(7x-14>0\Leftrightarrow7x>14\Leftrightarrow x>2\)
6) Ta có \(x^2-3x+7=x^2-2x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{19}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}>0\Leftrightarrow x^2-3x+7>0\)
Vậy với mọi x thì \(\sqrt{x^2-3x+7}\) luôn có nghĩa
7) Để biểu thức \(\sqrt{2x-1}\) có nghĩa thì \(2x-1\ge0\Leftrightarrow2x\ge1\Leftrightarrow x\ge\dfrac{1}{2}\)
8) Để biểu thức \(\sqrt{x^2-9}\) có nghĩa thì \(x^2-9\ge0\Leftrightarrow x^2\ge9\Leftrightarrow\)\(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
9) Để biểu thức \(\sqrt{\dfrac{x+3}{7-x}}\) có nghĩa thì \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\7-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3\le0\\7-x< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-3\\x< 7\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-3\\x>7\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(-3\le x< 7\)
10) Để biểu thức \(\sqrt{6x-1}+\sqrt{x+3}\) có nghĩa thì \(\left\{{}\begin{matrix}6x-1\ge0\\x+3\ge0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}6x\ge1\\x\ge-3\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge\dfrac{1}{6}\\x\ge-3\end{matrix}\right.\)\(\Leftrightarrow\)\(x\ge\dfrac{1}{6}\)
a/ Để biểu thức không có nghĩa thì
3x + 9 < 0 <=> 3x < -9 <=> x < -3
Vậy x < -3
b/ Để bt không có nghĩa thì:
-5x-10 < 0 <=> -5x < 10 <=> x > -2
Vậy x > -2
c/ Vì -5 < 0 nên để bt có nghĩa thì:
-x - 7 > 0 <=> -x > 7 <=> x < - 7
Vậy x < -7
d/ \(\sqrt{x^2+2x+3}=\sqrt{\left(x^2+2x+1\right)+2}=\sqrt{\left(x+1\right)^2+2}\)
Vì: \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+2\ge2>0\Rightarrow\sqrt{\left(x+1\right)^2+2}>0\)
=> Không có gt nào của x thỏa mãn đề bài
a/ \(x^2+4x-5>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -5\end{matrix}\right.\)
b/ \(\left\{{}\begin{matrix}2x-1\ge0\\x-\sqrt{2x-1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\\left\{{}\begin{matrix}x>0\\x^2>2x-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\end{matrix}\right.\)
c/ \(\left\{{}\begin{matrix}x^2-3\ge0\\1-\sqrt{x^2-3}\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{matrix}\right.\\x\ne\pm2\end{matrix}\right.\)
d/ \(\left\{{}\begin{matrix}x+\dfrac{1}{x}\ge0\\-2x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>0\\x\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn
e/ \(\left\{{}\begin{matrix}3x-1\ge0\\5x-3\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\ge\dfrac{3}{5}\end{matrix}\right.\) \(\Rightarrow x\ge\dfrac{3}{5}\)
a) Vì biểu thức \(\sqrt{\dfrac{-5}{x^2+6}}\)có -5<0 nên làm cho cả phân số âm
Từ đó suy ra căn thức vô nghiệm
Vậy không có giá trị nào của x để biểu thức trên xác định
b) \(\sqrt{\left(x-1\right)\left(x-3\right)}\)
Để biểu thức trên xác định thì chia ra 4 TH (vì để xác định thì cả x-1 và x-3 cùng dương hoặc cùng âm)
\(\left[\begin {array} {} \begin{cases} x-1\geq0\\ x-3\geq0 \end{cases} \Leftrightarrow \begin{cases} x\geq1\\ x\geq3 \end{cases} \Rightarrow x\geq3 \\ \begin{cases} x-1\leq0\\ x-3\leq0 \end{cases} \Leftrightarrow \begin{cases} x\leq1\\ x\leq3 \end{cases} \Rightarrow x\leq1 \end{array} \right.\)
c) \(\sqrt{x^2-4}\) \(\Leftrightarrow\)\(\sqrt{\left(x-2\right)\left(x+2\right)}\)
Rồi làm như câu b
d) \(\sqrt{\dfrac{2-x}{x+3}}\)
Để biểu thức trên xác định thì
\(\begin{cases}2-x\ge0\\x+3>0\end{cases}\Leftrightarrow\begin{cases}x\ge2\\x>-3\end{cases}\) \(\Rightarrow\) \(x\ge2\) hoặc \(x>-3\)
e) Ở các biểu thức sau này nếu chỉ có căn thức có ẩn và + (hoặc trừ) với 1 số thì chỉ cần biến đổi cái có ẩn còn cái số thì kệ xác nó đi )
\(\sqrt{x^2-3x}\Leftrightarrow\sqrt{x\left(x-3\right)}\)
Để biểu thức trên xác định thì \(x\ge0\) và \(x-3\ge0\Leftrightarrow x\ge3\)
Bữa sau mình làm tiếp
a) Để \(\sqrt{3x-5}\) có nghĩa thì
3x - 5 \(\ge\) 0 <=> 3x \(\ge\) 5 <=> x \(\ge\) \(\dfrac{5}{3}\)
b) Để \(\sqrt{\dfrac{-3}{4-5x}}\) có nghĩa thì
\(\dfrac{-3}{4-5x}\ge0\)
Do -3 < 0 nên \(\dfrac{-3}{4-5x}< 0\)
Khi và chỉ khi 4 - 5x < 0 <=> x > \(\dfrac{4}{5}\)
c) Để \(\sqrt{x^2-5x+4}\) = \(\sqrt{\left(x^2-x\right)-\left(4x-4\right)}=\sqrt{x\left(x-1\right)-4\left(x-1\right)}=\sqrt{\left(x-1\right)\left(x-4\right)}\) có nghĩa thì
\(\left(x-1\right)\left(x-4\right)\ge0\)
Ta có bảng xét dấu :
x (x-1) (x-4) (x-1)(x-4) 1 4 0 0 0 0 - + + - - + + - +
=> x \(\le1\) Hoặc x \(\ge4\)
e) Để \(\sqrt{2x-3}\) có nghĩa thì \(2x-3\ge0< =>2x\ge3\Leftrightarrow x\ge\dfrac{3}{2}\)
1) Để biểu thức \(\sqrt{-2x}\) có nghĩa thì \(-2x\ge0\Leftrightarrow x\le0\)
2) Để biểu thức \(\sqrt{15x}\) có nghĩa thì \(15x\ge0\Leftrightarrow x\ge0\)
3) Để biểu thức \(\sqrt{2x+1}\) có nghĩa thì \(2x+1\ge0\Leftrightarrow2x\ge-1\Leftrightarrow x\ge\dfrac{-1}{2}\)
4) Để biểu thức \(\sqrt{3-6x}\) có nghĩa thì \(3-6x\ge0\Leftrightarrow6x\le3\Leftrightarrow x\le\dfrac{1}{2}\)
5) Để biểu thức \(\dfrac{1}{2-\sqrt{x}}\) có nghĩa thì \(\left\{{}\begin{matrix}x\ge0\\2-\sqrt{x}\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
6) Để biểu thức \(\dfrac{3}{\sqrt{x^2-1}}\) có nghĩa thì \(x^2-1>0\Leftrightarrow x^2>1\Leftrightarrow\)\(\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)
7) Ta có \(x^2\ge0\Leftrightarrow2x^2\ge0\Leftrightarrow2x^2+3\ge3>0\)
Vậy với mọi x thì biểu thức 2x2+3 luôn được xác định
8) Ta có \(-x^2\le0\Leftrightarrow-x^2-5\le-5< 0\)
Vậy với mọi x thì biểu thức \(\dfrac{5}{\sqrt{-x^2-2}}\) sẽ không xác định
1)
a) \(6=\sqrt{36}< \sqrt{40}\)
b) \(3=\sqrt{9}< \sqrt{10}\)
c) \(2\sqrt{3}< 2\sqrt{4}=4\)
d) \(3\sqrt{2}=\sqrt{18}< \sqrt{36}=6\)
e) \(7=\sqrt{49}< \sqrt{50}\)
2)
a) \(x\ge0\)
b) \(-2x+1\ge0\Leftrightarrow-2x\ge-1\Leftrightarrow x\le\dfrac{1}{2}\)
c) \(5-a\ge0\Leftrightarrow a\le5\)
d) \(2x-3>0\Leftrightarrow2x>3\Leftrightarrow x>\dfrac{3}{2}\)
e) \(-3< x< 1\)
f) \(-3x\ge-4\Leftrightarrow x\le\dfrac{4}{3}\)
g) \(x^2-2x-3\ge0\Leftrightarrow\left(x+1\right)\left(x-3\right)\ge0\Leftrightarrow-1\le x\le3\)
a) ĐKXĐ của biểu thức \(\sqrt{\dfrac{5}{7-x^2}}\) là \(7-x^2\) > 0
<=> \(x^2< 7\)
<=> x < \(\sqrt{7}\)
Vậy ĐKXĐ của biểu thức \(\sqrt{\dfrac{5}{7-x^2}}\) là x < \(\sqrt{7}\)
b) ĐKXĐ của biểu thức \(\sqrt{\dfrac{2x-1}{2-x}}\) là \(\dfrac{2x-1}{2-x}\) ≥ 0 ; 2 - x ≠ 0
<=> \(\dfrac{2x-1}{2-x}>0\)
<=> 2x-1 và 2-x cùng dấu
+ TH1 : 2x-1 > 0 và 2-x>0
<=> x > \(\dfrac{1}{2}\) và x < 2
<=> \(\dfrac{1}{2}< x< 2\)
+ TH2 : 2x-1 < 0 và 2-x < 0
<=> x < \(\dfrac{1}{2}\) và x > 2 ( Vô lý)
=> Loại
Vậy ĐKXĐ của biểu thức \(\sqrt{\dfrac{2x-1}{2-x}}\) là \(\dfrac{1}{2}< x< 2\)
c) ĐKXĐ của biểu thức \(\sqrt{5x^2-3x-8}\) là 5x2 - 3x - 8 ≥ 0
<=> 5x2 + 5x - 8x - 8 ≥ 0
<=> 5x.(x+1) - 8.(x+1) ≥ 0
<=> (5x - 8).(x+1) ≥ 0
+ TH1 : 5x-8 ≥ 0 và x+1 ≥ 0
<=> x ≥ \(\dfrac{8}{5}\) và x ≥ -1
<=> x ≥ \(\dfrac{8}{5}\)
+ TH2 : 5x-8 ≤ 0 và x+1 ≤ 0
<=> x ≤ \(\dfrac{8}{5}\) và x ≤ -1
<=> x ≤ -1
Vậy ĐKXĐ của biểu thức \(\sqrt{5x^2-3x-8}\) là x ≤ -1 hoặc x ≥ \(\dfrac{8}{5}\)
a) Để biểu thức \(\sqrt{\dfrac{5}{7-x^2}}\) xác định thì \(\left\{{}\begin{matrix}7-x^2\ge0\\7-x^2\ne0\end{matrix}\right.\)\(\Leftrightarrow7-x^2>0\Leftrightarrow7>x^2\Leftrightarrow\)\(\left\{{}\begin{matrix}x< \sqrt{7}\\x>-\sqrt{7}\end{matrix}\right.\)
Vậy \(-\sqrt{7}< x< \sqrt{7}\) thì biểu thức \(\sqrt{\dfrac{5}{7-x^2}}\) được xác định
b) Để biểu thức \(\sqrt{\dfrac{2x-1}{2-x}}\) được xác định thì \(\dfrac{2x-1}{2-x}\ge0\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1\ge0\\2-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1\le0\\2-x< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\x>2\end{matrix}\right.\end{matrix}\right.\)
Vì trường hợp \(\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\x>2\end{matrix}\right.\) không thỏa mãn
Vậy \(\dfrac{1}{2}\le x< 2\) thì biểu thức \(\sqrt{\dfrac{2x-1}{2-x}}\) được xác định
c) Để biểu thức \(\sqrt{5x^2-3x-8}\) được xác định thì \(5x^2-3x-8\ge0\Leftrightarrow5x^2+5x-8x-8\ge0\Leftrightarrow5x\left(x+1\right)-8\left(x+1\right)\ge0\Leftrightarrow\left(x+1\right)\left(5x-8\right)\ge0\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\ge0\\5x-8\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1\le0\\5x-8\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-1\\x\ge\dfrac{8}{5}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-1\\x\le\dfrac{8}{5}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x\ge\dfrac{8}{5}\\x\le-1\end{matrix}\right.\)
Vậy x\(\ge\dfrac{8}{5}\) hoặc \(x\le-1\) thì biểu thức \(\sqrt{5x^2-3x-8}\) được xác định
a) ĐKXĐ: \(10-5x< 0\Leftrightarrow5x>10\Leftrightarrow x>2\)
b) ĐKXĐ: \(7-3x>0\Leftrightarrow3x< 7\Leftrightarrow x< \dfrac{7}{3}\)
c) ĐKXĐ: \(-5-2x\ge0\Leftrightarrow2x\le-5\Leftrightarrow x\le-\dfrac{5}{2}\)
a) \(x>2\)
b) \(x< \dfrac{7}{3}\)
c) \(x\le-\dfrac{5}{2}\)