Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)
\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)
\(\Leftrightarrow2x^2+8x+6=0\)
\(\Leftrightarrow x^2+4x+4-1=0\)
\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)
Vậy : \(x=-3\) thì P = 1.
a) \(\frac{x+5}{x^2+5x-6}\)
ĐKXĐ: \(x^2+5x-6=x^2+6x-x-6\)
\(x\left(x+6\right)-\left(x+6\right)=\left(x-1\right)\left(x+6\right)\)
\(\Rightarrow x\ne1\) và \(x\ne-6\)
b) \(\frac{1-x}{3x^2-7x-6}\)
ĐKXĐ: \(3x^2-7x-6=3x^2-9x+2x-6=\left(x-3\right)\left(3x+2\right)\)
\(\Rightarrow x\ne3\) và \(x\ne\frac{-2}{3}\)
a:TXĐ D=R\{2}
b: \(P=\dfrac{x^2}{x^3-8}+\dfrac{x}{x^2+2x+4}+\dfrac{1}{x-2}\)
\(=\dfrac{2x^2-2x+x^2+2x+4}{\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\dfrac{3x^2+4}{x^3-8}\)
BÀI 1:
a) \(ĐKXĐ:\) \(x-3\)\(\ne\)\(0\)
\(\Leftrightarrow\)\(x\)\(\ne\)\(3\)
b) \(A=\frac{x^3-3x^2+4x-1}{x-3}\)
\(=\frac{\left(x^3-3x^2\right)+\left(4x-12\right)+11}{x-3}\)
\(=\frac{x^2\left(x-3\right)+4\left(x-3\right)+11}{x-3}\)
\(=x^2+4+\frac{11}{x-3}\)
Để \(A\)có giá trị nguyên thì \(\frac{11}{x-3}\)có giá trị nguyên
hay \(x-3\)\(\notinƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng sau
\(x-3\) \(-11\) \(-1\) \(1\) \(11\)
\(x\) \(-8\) \(2\) \(4\) \(14\)
Vậy....
Điều kiện: X khác -1
\(A=\left(\frac{4}{x+1}-1\right):\frac{9+x^2}{x^2+2x+1}\)
\(=>A=\left(\frac{4}{x+1}-\frac{x+1}{x+1}\right):\frac{9+x^2}{\left(x+1\right)^2}\)
\(=>A=\frac{4-x-1}{x+1}\cdot\frac{\left(x+1\right)^2}{9+x^2}\)
\(=>A=\frac{\left(3-x\right)\cdot\left(x+1\right)}{9+x^2}\)
\(1+\frac{1}{x+2}=\frac{12}{x^3+8}\Leftrightarrow1+\frac{1}{x+2}=\frac{12}{\left(x+2\right)\left(x^2-2x+4\right)}\)
đk : \(x\ne2\)
\(x^2-2x+4=x^2-2x+1+3=\left(x-1\right)^2+3\ge3\ne0\)( luôn đúng )
đk để xác định: \(x^2+1\ne0\)
=>x là số nào cũng được vì \(x^2+1\) luôn luôn > 0
A=1/(x^2+1)
A xác định khi x^2+1 khác 0
mà x^2+1 lớn hơn 0 với mọi x
suy ra A xác định với mọi GT của x