Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL:
ĐKXĐ:\(\sqrt{x^2-1}>0\)
\(\Leftrightarrow x^2-1>0\Leftrightarrow x^2>1\Leftrightarrow x>1\)
Vậy...
Ta có
\(\sqrt{x^2-3x+7}\)
\(=\sqrt{x^2-2.x.\frac{3}{2}+\frac{9}{4}+\frac{19}{4}}\)
\(=\sqrt{\left(x-\frac{3}{2}\right)^2+\frac{19}{4}}\)
Vì \(\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{19}{4}>0\end{cases}\)\(\Rightarrow\sqrt{\left(x-\frac{3}{2}\right)^2+\frac{19}{4}}>0\)
Vậy biểu thức có ngĩa với mọi x
ĐKXĐ x>=-\(\frac{-3}{2}\)
Bình phương
4x2-9=4(2x+3)
4x2-9-8x-12=0
4x2-8x-20=0
\(x=1-\sqrt{6}\)hoặc\(x=1+\sqrt{6}\)
ĐKXĐ : \(x^2-7\ge0\Leftrightarrow\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\sqrt{7}\ge0\\x+\sqrt{7}\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\sqrt{7}\le0\\x+\sqrt{7}\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\sqrt{7}\\x\ge-\sqrt{7}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\sqrt{7}\\x\le-\sqrt{7}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge\sqrt{7}\\x\le-\sqrt{7}\end{matrix}\right.\)
Để biểu thức \(\sqrt{x^2-7}\) xác định thì \(x^2-7\ge0\Leftrightarrow x^2\ge7\Leftrightarrow\)\(\left[{}\begin{matrix}x\ge\sqrt{7}\\x\le-\sqrt{7}\end{matrix}\right.\)
\(25-4x^2\ge0\Leftrightarrow x^2\le\frac{25}{4}\Leftrightarrow\orbr{\begin{cases}x\le\frac{25}{4}\\x\ge\frac{-25}{4}\end{cases}\Leftrightarrow\frac{-25}{4}\le x\le\frac{25}{4}}\)
a) A= \(\sqrt{x-1}+\sqrt{3-x}\)
ĐK: \(\hept{\begin{cases}x-1\text{ ≥ }0\\3-x\text{ ≥ }0\end{cases}}\)=> \(\hept{\begin{cases}x\text{ ≥ }1\\x\text{≤}3\end{cases}}\)
Vậy 1≤x≤3
b) \(\frac{1}{3-\sqrt{5}}-\frac{1}{\sqrt{5}+1}\)
\(=\frac{3+\sqrt{5}}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}-\frac{\sqrt{5}-1}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)
\(=\frac{3+\sqrt{5}}{4}-\frac{\sqrt{5}-1}{4}\)
\(=\frac{3+1}{4}=1\)
a, 1 nhỏ hơn hoặc bằng x nhỏ hơn hoặc bằng 3
b, quy đồng mẫu ta được kết quả bằng 1