Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, ĐKXĐ : \(x-1\ne0\)
=> \(x\ne1\)
TH1 : \(x-2\ge0\left(x\ge2\right)\)
=> \(\left|x-2\right|=x-2=1\)
=> \(x=3\left(TM\right)\)
- Thay x = 3 vào biểu thức P ta được :
\(P=\frac{3+2}{3-1}=\frac{5}{2}\)
TH2 : \(x-2< 0\left(x< 2\right)\)
=> \(\left|x-2\right|=2-x=1\)
=> \(x=1\left(KTM\right)\)
Vậy giá trị của P là \(\frac{5}{2}\) .
a) \(P=\frac{x+2}{x-1}\) \(\left(ĐKXĐ:x\ne1\right)\)
Ta có: \(\left|x-2\right|=1\text{⇔}\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\) (loại x = 1 vì x ≠ 1)
Thay \(x=3\) vào P, ta có:
\(P=\frac{3+2}{3-2}=\frac{5}{1}=5\)
Vậy P = 5 tại x = 3.
b) \(Q=\frac{x-1}{x}+\frac{2x+1}{x^2+x}=\frac{x-1}{x}+\frac{2x+1}{x\left(x+1\right)}=\frac{x^2-1}{x\left(x+1\right)}+\frac{2x+1}{x\left(x+1\right)}\) (ĐKXĐ: x ≠ 0, x ≠ -1)
\(=\frac{x^2+2x}{x\left(x+1\right)}=\frac{x\left(x+2\right)}{x\left(x+1\right)}=\frac{x+2}{x+1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. ĐKXĐ : \(x\ne\pm8\)
Ta có :
\(\frac{A}{x^2-64}=\frac{x}{x-8}\)
\(\Leftrightarrow\frac{A}{\left(x-8\right)\left(x+8\right)}=\frac{x}{x-8}\)
\(\Leftrightarrow A=\frac{x}{x-8}.\left(x-8\right)\cdot\left(x+8\right)\)
\(\Leftrightarrow A=x\left(x+8\right)\)
Vậy...
2/ \(A=\frac{32x-8x^2+2x^3}{x^3+64}=\frac{2x\left(x^2-4x+16\right)}{\left(x+4\right)\left(x^2-4x+16\right)}=\frac{2x}{x+4}\)
Vậy...
3/ \(M=\frac{4}{x^2+4x+7}=\frac{4}{\left(x^2+4x+4\right)+3}=\frac{4}{\left(x+2\right)^2+3}\)
Với mọi x ta có :
\(\left(x+2\right)^2\ge0\)
\(\Leftrightarrow\left(x+2\right)^2+3\ge3\)
\(\Leftrightarrow\frac{4}{\left(x+2\right)^2+3}\le\frac{4}{3}\)
\(\Leftrightarrow M\le\frac{4}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=-2\)
Vậy....
5/ \(\frac{1}{\left(x-y\right)\left(y-z\right)}+\frac{1}{\left(y-z\right)\left(z-x\right)}+\frac{1}{\left(z-x\right)\left(x-y\right)}\)
\(=\frac{1}{x-y}-\frac{1}{y-z}+\frac{1}{y-z}-\frac{1}{z-x}+\frac{1}{z-x}-\frac{1}{x-y}\)
\(=0\)
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
1/
A= \(\dfrac{2x+6}{\left(x+3\right)\left(x-2\right)}\) = 0 ;(ĐKXĐ : x ≠ -3; x ≠ 2)
⇔ A = \(\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\) = 0
⇔ A = \(\dfrac{2}{x-2}\) = 0
⇒ x = 2 (loại) ⇒ pt vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
Giúp bạn câu 1 thôi (Mình lười lắm)
(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4
Chúc bn học tốt!!
![](https://rs.olm.vn/images/avt/0.png?1311)
B1:a)(3x-5)2-(3x+1)2=8
[(3x-5)+(3x+1)].[(3x-5)-(3x+1)]=8
(3x-5+3x+1)(3x-5-3x-1)=8
9x2-15x-9x2-3x-15x+25+15x+5+9x2-15x-9x2-3x+3x-5-3x-1=8
-36x+24=8
-36x=8-24=16
x=16:(-36)=\(\dfrac{-4}{9}\)
Bài 5:
a: \(=\left(xy-u^2v^3\right)\left(xy+u^2v^3\right)\)
b: \(=\left(2xy^2-3xy^2+1\right)\left(2xy^2+3xy^2-1\right)\)
\(=\left(1-xy^2\right)\left(5xy^2-1\right)\)
Bài 6:
a: \(\left(a+b+c-d\right)\left(a+b-c+d\right)\)
\(=\left(a+b\right)^2+\left(c-d\right)^2\)
\(=a^2+2ab+b^2+c^2-2cd+d^2\)
b: \(\left(a+b-c-d\right)\left(a-b+c-d\right)\)
\(=\left(a-d\right)^2-\left(b-c\right)^2\)
\(=a^2-2ad+d^2-b^2+2bc-c^2\)
a) m ≠ 8 3 b) n ≠ 0 và n ≠ 2.
c) v ∈ ℝ
d) Chú ý: Biến đổi u 3 - 3u + 2 = ( u - 1 ) 2 (u + 2). Từ đó tìm được điều kiện xác định là u ≠ -2 và u ≠ 1.