Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{\frac{2x-3}{x-1}}=2\RightarrowĐk:\frac{2x-3}{x-1}\ge0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x\ge\frac{3}{2}\\x< 1\end{array}\right.\)
\(\sqrt{\frac{2x-3}{x-1}}=2\Rightarrow\frac{2x-3}{x-1}=4\)
\(\Leftrightarrow2x-3=4\left(x-1\right)\Leftrightarrow2x-3=4x-4\)
\(\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)(nhận)
b)\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\RightarrowĐk:\begin{cases}2x-3\ge0\\x-1>0\end{cases}\)
\(\Leftrightarrow x\ge\frac{3}{2}\)
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow\sqrt{2x-3}=2\sqrt{x-1}\)
\(\Leftrightarrow2x-3=4x-4\)\(\Leftrightarrow x=\frac{1}{2}\)(loại)
c)\(\sqrt{\frac{4x+3}{x+1}}=3\RightarrowĐk:\frac{4x+3}{x+1}\ge0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x\ge\frac{-3}{4}\\x< -1\end{array}\right.\)
\(\sqrt{\frac{4x+3}{x+1}}=3\Rightarrow\frac{4x+3}{x+1}=9\)
\(\Leftrightarrow4x+3=9\left(x+1\right)\Leftrightarrow4x+3=9x+9\)
\(\Leftrightarrow5x=-6\Leftrightarrow x=\frac{-6}{5}\)(nhận)
c)\(\frac{\sqrt{4x+3}}{\sqrt{x+1}}=3\RightarrowĐk:\begin{cases}4x+3\ge0\\x+1>0\end{cases}\)
\(\Rightarrow x\ge\frac{-3}{4}\)
\(\frac{\sqrt{4x+3}}{\sqrt{x+1}}=3\Rightarrow\sqrt{4x+3}=3\sqrt{x+1}\)
\(\Leftrightarrow4x+3=9\left(x+1\right)\Leftrightarrow4x+3=9x+9\)
\(\Leftrightarrow x=\frac{-6}{5}\)(loại)
1) \(\sqrt{x-1}=\sqrt{2x+3}\) ĐK: x ≥ 1; x ≥ \(\dfrac{-3}{2}\) => x ≥ 1
=> x - 1 = 2x + 3
=> x - 2x = 3 + 1
=> -x = 4 => x = -4 (ko TMĐK)
Vậy S = ∅
2) \(\sqrt{2x-3}=\sqrt{x-1}\) ĐK: x ≥ \(\dfrac{3}{2}\); x ≥ 1 => x ≥ \(\dfrac{3}{2}\)
=> 2x - 3 = x - 1
=> 2x - x = -1 + 3
=> x = -2 (ko TMĐK)
Vậy S = ∅
3) \(\sqrt{2-x}=\sqrt{3+x}\) ĐK: x ≥ 2; x ≥ -3 => x ≥ 2
=> 2 - x = 3 + x
=> -x - x = 3 - 2
=> -2x = 1 => x = \(\dfrac{-1}{2}\) (ko TMĐK)
Vậy S = ∅
4) \(\sqrt{4x-8}=2\sqrt{x-2}\) ĐK: x ≥ 2
=> 4x - 8 = 2(x - 2)
=> 4x - 8 = 2x - 4
=> 4x - 2x = -4 + 8
=> 2x = 4 => x = 4 : 2 = 2 (TMĐK)
Vậy S = \(\left\{2\right\}\)
5) \(\sqrt{x^2-5}=\sqrt{4x-9}\) ĐK: \(\left|x\right|=\sqrt{5}\) ; x ≥ \(\dfrac{9}{4}\)
<=> x2 - 5 = 4x - 9
<=> x2 - 4x - 5 + 9 = 0
<=> x2 - 4x - 4 = 0 <=> (x - 2)2 =0
=> x = 2 (ko TMĐK)
6) \(\sqrt{x-2}=\sqrt{x^2-2x}\) ĐK: x ≥ 2
=> x - 2 = x2 - 2x
=> x - 2 - x2 + 2x = 0
=> (x - 2) - x(x - 2) = 0
=> (1- x) . (x - 2) = 0
=> \(\left\{{}\begin{matrix}1-x=0\\x-2=0\end{matrix}\right.=>\left\{{}\begin{matrix}x=1-0=1\left(loai\right)\\x=0+2=2\left(TMĐK\right)\end{matrix}\right.\)
Vậy S = \(\left\{2\right\}\)
7) \(\sqrt{x^2-3x}-\sqrt{15-5x}=0\) ĐK: x ≥ 3 hoặc x ≤ 0
<=> \(\sqrt{x^2-3x}=\sqrt{15-5x}\)
<=> x2 - 3x = 15 - 5x
=> x2 - 3x + 5x - 15 = 0
=> x(x -3) + 5(x - 3) = 0
=> (x + 5) . (x - 3) = 0
=> \(\left[{}\begin{matrix}x+5=0\\x-3=0\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=0-5=-5\\x=0+3=3\end{matrix}\right.\)(TMĐK)
Vậy S = \(\left\{-5;3\right\}\)
8) \(\sqrt{4x^2-9}=\sqrt{-20x-18}\) ĐK: \(\left|x\right|\text{≥}\dfrac{3}{2}\) hoặc x ≤ \(\dfrac{-9}{10}\)
<=> 4x2 - 9 = -20x - 18
<=> 4x2 - 9 + 20x + 18 = 0
<=> 4x2 + 20x + 9 =0
<=> 4x2 + 2x + 18x + 9 =0
<=> 2x(2x + 1) + 9(2x + 1) = 0
<=> (2x + 9) . (2x + 1) = 0
=> \(\left[{}\begin{matrix}2x+9=0\\2x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}2x=-9\\2x=-1\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=\dfrac{-9}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy S = \(\left\{\dfrac{-9}{2};\dfrac{-1}{2}\right\}\)
9) \(\sqrt{x-2}=\sqrt{x-2}\) ĐK: x ≥ 2
<=> x - 2 = x - 2
<=> x - x = 2 - 2
=> 0x = 0 với mọi x TMĐK: x ≥ 2
Kết luận: Phương trình vô nghiệm thoả mãn: x ≥ 2
1,
√(x-1) = √(2x+3)
->(√x-1)^2 = (√2x+3)^2
->x-1=2x+3
->x=-4
2
√(2x−3)=√(x−1) (bình phương lên tiếp)
->2x-3=x-1
->x=2
3->9 tự làm nha tương tự
\(a,\sqrt{1-3x}\)
\(< =>1-3x\ge0\)
\(3x\le1\)
\(x\le\frac{1}{3}\)
\(b,-3< 0\)
\(< =>2x-5\ne0;2x-5\le0< =>2x-5< 0\)
\(x< \frac{5}{2}\)
\(c,\sqrt{3x+2}+\sqrt{-2x+3}\)
\(\hept{\begin{cases}3x+2\ge0\\-2x+3\ge0\end{cases}}\)
\(\hept{\begin{cases}x\ge-\frac{2}{3}\\x\le\frac{3}{2}\end{cases}}\)
\(< =>-\frac{2}{3}\le x\le\frac{3}{2}\)
\(d,\frac{x-5}{\sqrt{-4x}}\)
\(\sqrt{-4x}\ge0;\sqrt{-4x}\ne0< =>\sqrt{-4x}>0\)
\(-4x>0\)
\(x< 0\)
\(e,\sqrt{x-2}+\frac{1}{x-3}\)
\(\sqrt{x-2}\ge0;x-3\ne0\)
\(x\ge2;x\ne3\)
\(f,\sqrt{-\left(x-2\right)^2}\)
\(\sqrt{-\left(x-2\right)^2}\ge0\)
\(-\left|x-2\right|\ge0\)
\(-\left|x-2\right|\le0\)
lên chỉ có 1 nghiệm duy nhất là
\(x-2=0< =>x=2\)
\(g,\sqrt{\frac{-2x^2}{3x+2}}\)
\(-2x^2\le0\)
\(\sqrt{\frac{-2x^2}{3x+2}}\ge0< =>3x+2\le0;3x+2\ne0\)
\(x\le-\frac{2}{3};x\ne-\frac{2}{3}< =>x< -\frac{2}{3}\)
a)\(\sqrt{1-3x}\)có nghĩa \(\Leftrightarrow\sqrt{1-3x}\ge0\)
\(\Leftrightarrow1-3x\ge0\)
\(\Leftrightarrow-3x\ge-1\)
\(\Leftrightarrow x\ge\frac{1}{3}\)
b)\(\sqrt{\frac{-3}{2x-5}}\)có nghĩa \(\Leftrightarrow\sqrt{\frac{-3}{2x-5}}\ge0\)
\(\Leftrightarrow\frac{-3}{2x-5}\ge0\)
\(\Leftrightarrow2x-5>0\)
\(\Leftrightarrow2x>5\)
\(\Leftrightarrow x>\frac{5}{2}\)
c)\(\sqrt{3x+2}+\sqrt{-2x+3}\)có nghĩa \(\sqrt{3x+2}+\sqrt{-2x+3}\ge0\)
\(\Leftrightarrow3x+2-2x+3\ge0\)
\(\Leftrightarrow x+5\ge0\)
\(\Leftrightarrow x\ge-5\)
d)\(\frac{x-5}{\sqrt{-4x}}\)có nghĩa \(\Leftrightarrow\frac{x-5}{\sqrt{-4x}}\ge0\)
\(\Leftrightarrow\frac{x-5}{\sqrt{-\left(2x\right)^2}}\ge0\)
\(\Leftrightarrow\frac{x-5}{-2x}\ge0\)
\(\Leftrightarrow-2x>0\)
\(\Leftrightarrow x>2\)(Câu này không chắc làm đúng không, chắc sai goi)
f)\(\sqrt{-x^2+4x-4}\)có nghĩa \(\Leftrightarrow\sqrt{-x^2+4x-4}\ge0\)
\(\Leftrightarrow-x^2+4x-4\ge0\)
\(\Leftrightarrow-\left(x-2\right)^2\ge0\)
không có z thỏa mãn
g)\(\sqrt{\frac{-2x^2}{3x+2}}\)có nghĩa \(\Leftrightarrow\sqrt{\frac{-2x^2}{3x+2}}\ge0\)
\(\Leftrightarrow\frac{-2x^2}{3x+2}\ge0\)
\(\Leftrightarrow3x+2>0\)
\(\Leftrightarrow3x>-2\)
\(\Leftrightarrow x>\frac{-2}{3}\)
@Cừu
a) \(\sqrt{3x+1}\)xác định
\(\Leftrightarrow3x+1\ge0\)
\(\Leftrightarrow3x\ge-1\)
\(\Leftrightarrow x\ge-\frac{1}{3}\)
vậy với \(x\ge-\frac{1}{3}\) thì căn thức trên được xác định
b) \(\sqrt{\frac{2x+1}{3}}\)xác định
\(\Leftrightarrow2x+1\ge0\)
\(\Leftrightarrow2x\ge-1\)
\(\Leftrightarrow x\ge-\frac{1}{2}\)
vậy với \(x\ge-\frac{1}{2}\)thì căn thức trên được xác định
c) \(\sqrt{\frac{5}{4x-6}}\)xác định
\(\Leftrightarrow\hept{\begin{cases}\frac{5}{4x-6}\ge0\\4x-6\ne0\end{cases}}\)
\(\Leftrightarrow4x-6>0\)
\(\Leftrightarrow4x>6\)
\(\Leftrightarrow x>\frac{3}{2}\)
vậy với \(\Leftrightarrow x>\frac{3}{2}\)thì căn thức trên được xác định
d) \(\sqrt{\frac{x^2}{3}}\)xác định
\(\Leftrightarrow\frac{x^2}{3}\ge0\)
\(\Leftrightarrow x^2\ge0\)luôn đúng
vậy với mọi giá trị của x thì căn thức luôn xác định
e) \(\sqrt{\frac{5}{x^2}}\)xác định
\(\Leftrightarrow\hept{\begin{cases}\frac{5}{x^2}\ge0\\x^2\ne0\end{cases}}\Leftrightarrow x>0\)
vậy với mọi x>0 thì căn thức được xác định
f) \(\sqrt{\frac{3-x}{x-2}}\)xác định
\(\Leftrightarrow\hept{\begin{cases}\frac{3-x}{x-2}\ge0\\x-2\ne0\end{cases}}\)
TH1:\(\hept{\begin{cases}3-x\ge0\\x-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le3\\x>2\end{cases}}}\)
TH2: \(\hept{\begin{cases}3-x\le0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge3\\x< 2\end{cases}}\)
a) Để : \(\sqrt{3x-2}\) xác định thì :
3x - 2 ≥ 0 ⇔ x ≥ \(\dfrac{2}{3}\)
KL...........
b) Để : \(\sqrt{4-2x}\) xác định thì :
4 - 2x ≥ 0 ⇔ x ≤ 2
KL.......
c) Để : \(\sqrt{-4x}\) xác định thì :
-4x ≥ 0 ⇔ x ≤ 0
KL.......
d) Để : \(\sqrt{x^2-2x+1}\) xác định thì :
x2 - 2x + 1 ≥ 0 ⇔ ( x - 1)2 ≥ 0 ( luôn đúng ∀x)
KL.........
Còn lại tương tự bạn nhé.
a) bt xác định
<=> x^2-4x+3>=0
<=> x^2-4x+4-1>=0
<=> (x-2)^2-1>=0
<=> (x-2)^2>=1
<=> x-2>=1 hoặc x-2<=1
Đến đây bạn giải 2 trường hợp trên là ra kết quả
a) ĐKXĐ:
$\begin{cases}1-2x\ge 0\\3-4x\ge 0\end{cases}\\\Leftrightarrow \begin{cases}2x\le 1\\4x\le 3\end{cases}\\\Leftrightarrow \begin{cases}x\le \dfrac{1}{2}\\x\le \dfrac{3}{4}\end{cases}\\\Leftrightarrow x\le \dfrac{1}{2}$
b) ĐKXĐ:
$\begin{cases}1+x\ge 0\\-4x\ge 0\end{cases}\\\Leftrightarrow \begin{cases}x\ge -1\\x\le 0\end{cases}\\\Leftrightarrow-1\le x\le 0$