Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(x^4-x^2+3x+5=2\sqrt{x+1}\) ĐK: \(x\ge-1\)
\(\Leftrightarrow\left(x^4-x^2+2x+2\right)+\left(x+1-2\sqrt{x+1}+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x^2-2x+2\right)+\left(\sqrt{x}-1\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2\left[\left(\sqrt{x}+1\right)^2\left(x^2-2x+2\right)+1\right]=0\)
Dễ thấy \(\left(\sqrt{x}+1\right)^2\left(x^2-2x+2\right)+1>0\)
Vậy x =1
3. ĐK: \(x\ge-2\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x+5}\ge0\\b=\sqrt{x+2}\ge0\end{matrix}\right.\)
pt trên được viết lại thành
\(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
\(\Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=1\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=\sqrt{x+2}\\\sqrt{x+5}=1\\\sqrt{x+2}=1\end{matrix}\right.\)
Đến đây thì dễ rồi nhé
2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)
\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)
Vì \(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)
\(\Rightarrow x=3\)
cho mình biết nghiệm mình giải cho
Tìm điều kiện mà