Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- \(\sqrt{\frac{2x^2+1}{7x}}\)ĐK \(\hept{\begin{cases}\frac{2x^2+1}{7x}\ge0\\x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\x\ne0\end{cases}\Leftrightarrow}x>0}\)
- \(\frac{\sqrt{2x-1}}{x^2-9}=\frac{\sqrt{2x-1}}{\left(x-3\right)\left(x+3\right)}\)ĐK \(\hept{\begin{cases}2x-1\ge0\\\left(x-3\right)\left(x+3\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ne3\\x\ne-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge\frac{1}{2}\\x\ne3\end{cases}}}\)
- \(\sqrt{\frac{x+2}{5-x}}\)ĐK \(\hept{\begin{cases}\frac{x+2}{5-x}\ge0\\5-x\ne0\end{cases}}\)
- \(TH1:\hept{\begin{cases}x+2\ge0\\5-x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-2\\x< 5\end{cases}\Leftrightarrow}-2\le x< 5}\)
- \(TH2:\hept{\begin{cases}x+2\le0\\5-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-2\\x>5\end{cases}VN}\)
Vậy đk là : \(-2\le x< 5\)
1) \(\frac{1}{\sqrt{2x-1}}\)có nghĩa khi \(\hept{\begin{cases}2x-1\ge0\\\sqrt{2x-1}\ne0\end{cases}}\)
\(\Leftrightarrow2x-1>0\)
\(\Leftrightarrow x>\frac{1}{2}\)
\(\sqrt{5-x}\)có nghĩa khi \(5-x\ge0\Leftrightarrow x\ge5\)
Vậy \(ĐKXĐ:\frac{1}{2}>x\ge5\)
2) \(\sqrt{x-\frac{1}{x}}\)có nghĩa khi \(\hept{\begin{cases}x-\frac{1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x^2}{x}-\frac{1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x^2-1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-1\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2\ge1\\x>0\end{cases}}\)
Vậy \(ĐKXĐ:x\ge1\)
3) \(\sqrt{2x-1}\)có nghĩa khi \(2x-1\ge0\) \(\Leftrightarrow x\ge\frac{1}{2}\)
\(\sqrt{4-x^2}\)có nghĩa khi \(4-x^2\ge0\Leftrightarrow x^2\le4\Leftrightarrow x\le2\)
Vậy \(ĐKXĐ:\frac{1}{2}\le x\le2\)
4) \(\sqrt{x^2-1}\)có nghĩa khi \(x^2-1\ge0\Leftrightarrow x^2\ge1\Leftrightarrow x\ge1\)
\(\sqrt{9-x^2}\)có nghĩa khi \(9-x^2\ge0\Leftrightarrow x^2\le9\Leftrightarrow x\le3\)
Vậy \(ĐKXĐ:1\le x\le3\)
1,Điều kiện để \(\sqrt{a}\) có nghĩa là \(a\ge0\)
2, a, để căn thức \(\sqrt{2x+6}\) có nghĩa \(\Leftrightarrow2x+6\ge0\)
\(\Leftrightarrow2x\ge-6\)
\(\Leftrightarrow x\ge-3\)
b, để căn thức \(\sqrt{\frac{-2}{2x-3}}\) có nghĩa \(\Leftrightarrow2x-3\ge0\)
\(\Leftrightarrow2x\ge3\)
\(\Leftrightarrow x\ge\frac{3}{2}\)
ĐKXĐ:
a/ \(\frac{2x-1}{2-x}\ge0\Rightarrow\frac{1}{2}\le x< 2\)
b/ \(x^2-x\ge0\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le0\end{matrix}\right.\)
c/ \(x+1>0\Rightarrow x>-1\)
d/ \(x^2-9\ge0\Rightarrow\left[{}\begin{matrix}x\le-3\\x\ge3\end{matrix}\right.\)
e/ \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-2\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
f/ \(-3x\ge0\Rightarrow x\le0\)