Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, de phuong trinh tren co nghia thi \(3x-9\ge0\)
\(3x\ge9< =>x\ge3\)
b, de phuong trinh tren co nghia thi \(5-10x\ge0\)
\(< =>10x\le5\)\(< =>x\le\frac{1}{2}\)
c, de phuong trinh tren co nghia thi \(\frac{3}{2x+1}\ge0\)(DK: x khac -1/2)
\(< =>2x+1\ge0\)\(< =>x>-\frac{1}{2}\)
d, de phuong trinh tren co nghia thi \(\frac{2x-4}{3}\ge0\)
\(< =>2x-4\ge0\)\(< =>x\ge2\)
e, de phuong trinh tren co nghia thi \(\frac{x^2}{2x-3}\)
do \(x^2\ge\)suy ra \(2x-3\ge0\)
\(< =>2x\ge3\)\(< =>x\ge\frac{3}{2}\)
Dài quá trôi hết đề khỏi màn hình: nhìn thấy câu nào giải cấu ấy
Bài 4:
\(A=\frac{\left(x-1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
a) DK x khác +-1
b) \(dk\left(a\right)\Rightarrow A=\frac{2}{\left(x+1\right)}\)
c) x+1 phải thuộc Ước của 2=> x=(-3,-2,0))
1. a) Biểu thức a có nghĩa \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
Vậy vs \(x\ne2,x\ne-2\) thì bt a có nghĩa
b) \(A=\frac{x}{x+2}+\frac{4-2x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-2x+4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x-2}{x+2}\)
c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\)
\(\Leftrightarrow x-2=\left(x+2\right).0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)(ko thỏa mãn điều kiện )
=> ko có gía trị nào của x để A=0
a) ĐKXĐ của A : \(\hept{\begin{cases}2x-3\ne0\\2x+3\ne0\\9-4x^2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}2x\ne3\\2x\ne-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{3}{2}\\x\ne-\frac{3}{2}\end{cases}}}\)
=> Giá trị của biểu thức A được xác định khi x khác 3/2 và x khác -3/2
\(A=\frac{5}{2x-3}+\frac{2}{2x+3}-\frac{2x+5}{9-4x^2}\)
\(=\frac{5}{2x-3}+\frac{2}{2x+3}+\frac{2x+5}{\left(2x+3\right)\left(2x-3\right)}\)
\(=\frac{5.\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{2.\left(2x-3\right)}{\left(2x+3\right)\left(2x-3\right)}+\frac{2x+5}{\left(2x+3\right)\left(2x-3\right)}\)
\(=\frac{10x+15+4x-6+2x+5}{\left(2x+3\right)\left(2x-3\right)}\)
..... chắc tôi làm sai oy !
\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)
Cần cách khác thì nhắn cái
a) \(\sqrt{\frac{1}{3-2x}}\)có nghĩa <=> \(\frac{1}{3-2x}>0\Leftrightarrow3-2x>0\Leftrightarrow x>\frac{3}{2}\)
b) \(\sqrt{\frac{x+2}{x^2+1}}\)có nghĩa <=> \(\frac{x+2}{x^2+1}\ge0\Leftrightarrow x+2\ge0\Leftrightarrow x\ge-2\)
c) \(\sqrt{\frac{x+5}{x-7}}\)có nghĩa <=> \(\frac{x+5}{x-7}\ge0\Leftrightarrow\orbr{\begin{cases}x>7\\x\le-5\end{cases}}\)
a) \(\sqrt{2x-1}\)co nghia khi \(2x-1\ge0\)
\(\Leftrightarrow2x\ge1\)
\(\Leftrightarrow x\ge\frac{1}{2}\)
vay \(\sqrt{2x-1}\) co nghia khi \(x\ge\frac{1}{2}\)
\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}3-2x\le0\\x+1< 0\end{cases}}\\\orbr{\begin{cases}3-2x\ge0\\x+1>\end{cases}}\end{cases}}\)
b) Biểu thức \(\sqrt{\frac{3-2x}{x+1}}\)xác định khi và chỉ
\(TH1:\hept{\begin{cases}3-2x\ge0\\x+1>0\end{cases}}\Rightarrow\hept{\begin{cases}x\le\frac{3}{2}\\x>-1\end{cases}}\Rightarrow-1< x\le\frac{3}{2}\)
\(TH2:\hept{\begin{cases}3-2x\le0\\x+1< 0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x< -1\end{cases}}\left(L\right)\)
Vậy \(-1< x\le\frac{3}{2}\)