Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(-x^2+6x-9\ge0\)
\(\Leftrightarrow\)\(-\left(-x^2+6x-9\right)\le0\)
\(\Leftrightarrow\)\(x^2-6x+9\le0\)
\(\Leftrightarrow\)\(\left(x-3\right)^2\le0\)
Mà \(\left(x-3\right)\ge0\)
Suy ra : \(\left(x-3\right)^2=0\)
\(\Leftrightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Chưa học nên sai thì thôi nhé =.="
Chúc bạn học tốt ~
\(a,ĐK:9x^2-1\ne0\Leftrightarrow x^2\ne\frac{1}{9}\Leftrightarrow x\ne\pm\frac{1}{3}\)
\(b,M=\frac{\sqrt{9x^2-6x+1}}{9x^2-1}=\frac{\sqrt{\left(3x-1\right)^2}}{\left(3x-1\right)\left(3x+1\right)}=\frac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}\)
với \(3x-1>0\) ta có \(M=\frac{3x-1}{\left(3x-1\right)\left(3x+1\right)}=\frac{1}{3x+1}\)
với \(3x-1< 0\) ta có \(M=\frac{-\left(3x-1\right)}{\left(3x-1\right)\left(3x+1\right)}=-\frac{1}{3x+1}\)
\(c,\) th1 : \(M=\frac{1}{3x+1}\) khi \(x>\frac{1}{3}\) mà \(M=\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{3x+1}=\frac{1}{4}\Leftrightarrow x=1\left(thoaman\right)\)
th2 : \(M=-\frac{1}{3x+1}\) khi \(x< \frac{1}{3}\) mà \(M=\frac{1}{4}\)
\(\Leftrightarrow\frac{-1}{3x+1}=\frac{1}{4}\Leftrightarrow3x+1=-4\Leftrightarrow x=-\frac{5}{3}\left(thoaman\right)\)
\(d,M=\frac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}< 0\) có \(\left|3x-1\right|>0\)
\(\Rightarrow\left(3x-1\right)\left(3x+1\right)< 0\)
th1 : \(\hept{\begin{cases}3x-1>0\\3x+1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>\frac{1}{3}\\x< -\frac{1}{3}\end{cases}\left(voli\right)}}\)
th2 : \(\hept{\begin{cases}3x-1< 0\\3x+1>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{1}{3}\\x>-\frac{1}{3}\end{cases}\Leftrightarrow-\frac{1}{3}< x< \frac{1}{3}}\)
1) a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)
b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)
Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)
Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)
Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)
Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)
c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)
\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)
\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)
- ĐK \(x^2-8x+18\ge0\Rightarrow x^2-8x+16+2\ge0\)\(\Rightarrow\left(x-4\right)^2+2\ge2\forall x\)TXD : R
- ĐK \(9x^2-6x+1>0\Rightarrow\left(3x-1\right)^2>0\forall x\ne\frac{1}{3}\)\(\Rightarrow TXD=R|\left\{\frac{1}{3}\right\}\)
\(DKXD\hept{\begin{cases}x\left(x^2-1\right)\le0\\x^2-1\ne0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< -1\\0\le x< 1\end{cases}}\)
Căn thức xác định \(\Leftrightarrow x^2+5x+4\ge0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)\ge0\)
Do đó: (x+1) và (x+4) là 2 số cùng dấu.
TH1: \(\hept{\begin{cases}x+1\ge0\\x+4\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\ge-4\end{cases}\Leftrightarrow}x\ge-1}\)
TH2: \(\hept{\begin{cases}x+1\le0\\x+4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\le-4\end{cases}\Leftrightarrow}x\le-4}\)
Vậy \(\orbr{\begin{cases}x\ge-1\\x\le-4\end{cases}}\)
Chúc bạn học tốt.
câu a
x phải dương và x khác 4
câu b
x = 9 P = 4
x = 4 P không xác định vì mẫu số= 0
Câu c
P ≤ 0 thì | P| > P
hết giờ rôi bạn hiền
mik cũng ko chắc đâu nếu sai thì thôi nhé:
ĐKXĐ : −x2+6x−9≥0−x2+6x−9≥0
⇔⇔−(−x2+6x−9)≤0−(−x2+6x−9)≤0
⇔⇔x2−6x+9≤0x2−6x+9≤0
⇔⇔(x−3)2≤0(x−3)2≤0
Mà (x−3)≥0(x−3)≥0
Suy ra : (x−3)2=0(x−3)2=0
⇔⇔x−3=0x−3=0
⇔⇔x=3
ĐKXĐ: \(^{x^2}\)- 6x + 9 ≥0 với mọi x