K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2021

Để \(\frac{x-2}{5}>0\)

=> x - 2 > 0 

<=> x > 2

Vậy x > 2 ; x \(\inℚ\) thì \(\frac{x-2}{5}\)là số hữu tỉ dương 

2 tháng 7 2019

Mình nghĩ như thế này thôi nhé   

x+2/x-6 = x-6+8/x-6 = 1  +   8/x-6 

để x+2/x-6 là số hữu tỉ dương => x-6  thuộc Ư(8)={ -1 ; 1 ; 2 ; -2 ; 4 ; -4 ; 8 ; -8 } 

nếu x -6 = 1 => x = 7 ( TM ) 

Nếu x - 6 = -1 => x= 8 ( tm ) 

Nếu x - 6 = 2 => x = 8 ( tm ) 

Nếu x -6 = -2 =>  x = 4 ( tm ) 

Nếu x - 6 = 4 => x = 10 ( tm )

Nếu x -6 = -4 => x = 2 ( tm) 

Nếu x -6 = 8 => x = 14 ( tm )

Nếu x -6=-8 => x = -2 ( ktm )

Vậy x € { 7 ; 5 ; £ ; 4 ; 2 ; 10 ; 14   } thì x+2 / x-6  là số hữu tỉ dương 

b/ câu này bạn cũng làm tương tự như vậy nhưng x phải là số âm thì mới thỏa mãn . 

2 tháng 7 2019

a)\(\frac{x+2}{x-6}\)là số hữu tỉ dương\(\Leftrightarrow x+2\)và \(x-6\)cùng dấu.

Mà x + 2 > x - 6 nên \(\hept{\begin{cases}x+2< 0\\x-6>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -2\\x>6\end{cases}}\)

Vậy x < - 2 và x > 6 thì \(\frac{x+2}{x-6}\)là số hữu tỉ dương

\(a,\frac{x-7}{x-11}=\frac{\left(x-11\right)+4}{x-11}=1+\frac{4}{x-11}\)

Để phân số trên là số hữu tỉ âm\(\Rightarrow\frac{4}{x-11}< 0\)

\(\Rightarrow x-11< 0\)

\(\Rightarrow x< 11\)

\(2,\frac{x+2}{x-6}=\frac{x-6+8}{x-6}=1+\frac{8}{x-6}\)

Để phân số trên là số hữu tỉ âm \(\frac{\Rightarrow8}{x-6}< 1\Rightarrow x-6>8\Rightarrow x>14\)

\(3,\frac{x-3}{x+7}=\frac{x+7-10}{x+7}=1-\frac{10}{x+7}\)

Để phân số trên là số hữu tỉ âm\(\Rightarrow\frac{10}{x+7}< 1\Rightarrow x+7>10\Rightarrow x>3\)

5 tháng 8 2015

1)x<6                                         2)x<-8

3)x>-7                                        4)x>-8

5)x<-9                                        6)x<7

 

5 tháng 8 2015

giup mik dk chieu mik dk mat roi

5 tháng 8 2015

LÀm 1 ý còn các ý khác tương tự 

1) - 3 < 0 Để \(-\frac{3}{x-6}\)  là số hữ tỉ dương khi 

x - 6 < 0 => x < 6 

8 tháng 8 2015

cái này mình chưa học tới nên không biết

8 tháng 8 2015

a) Ta có: \(\frac{x-7}{x-11}=\frac{\left(x-11\right)+4}{x-11}=1+\frac{4}{x-11}\)

Để phân số trên là số hữu tỉ âm.

=>\(\frac{4}{x-11}<1\)

=>4<x-11

=>x-11>4

=>x-11+11>4+11

=>x>45

Vậy để phân số trên là số hữu tỉ âm thì x>45

Các câu sau bạn làm tương tự nha.

14 tháng 11 2018

a, Ta có \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

(=) \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)

(=) \(\frac{b-a}{ab}=\frac{1}{a-b}\)

(=) \(\left(b-a\right).\left(a-b\right)=ab\)

Vì a,b là 2 số dương

=> \(\hept{\begin{cases}ab>0\left(1\right)\\\left(b-a\right).\left(a-b\right)< 0\left(2\right)\end{cases}}\) 

Từ (1) và (2) => Không tồn tại hai số a,b để \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

14 tháng 11 2018

b, Cộng vế với vế của 3 đẳng thức ta có :

\(x+y+y+z+x+z=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)

(=) \(2.\left(x+y+z\right)=-\frac{5}{6}\)

(=) \(x+y+z=\frac{-5}{12}\)

Ta có : \(x+y+z=\frac{-5}{12}\left(=\right)-\frac{7}{6}+z=-\frac{5}{12}\left(=\right)z=\frac{3}{4}\)

Lại có \(x+y+z=\frac{-5}{12}\left(=\right)x+\frac{1}{4}=-\frac{5}{12}\left(=\right)x=-\frac{2}{3}\)

Lại có \(x+y+z=-\frac{5}{12}\left(=\right)y+\frac{1}{12}=-\frac{5}{12}\left(=\right)y=\frac{-1}{2}\)

1: Để \(\dfrac{-5}{x-1}< 0\) thì x-1>0

hay x>1

2: Để \(\dfrac{7}{x-6}>0\) thì x-6>0

hay x>6

3: Để \(\dfrac{-3}{x-6}< 0\) thì x-6<0

hay x<6

2 tháng 8 2016

a) \(\frac{2}{x-1}< 0\)=> x-1<=>x<1

b) \(\frac{x-7}{x-11}>0\)

<=> \(\begin{cases}x-7>0\\x-11>0\end{cases}\)hoặc\(\begin{cases}x-7< 0\\x-11< 0\end{cases}\)<=>x>11 hoặc x<7

d) \(\frac{x+10}{x-7}< 0\)

<=> \(\begin{cases}x+10< 0\\x-7>0\end{cases}\)hoặc \(\begin{cases}x+10>0\\x-7< 0\end{cases}\)

=> 7<x<10

2 tháng 8 2016

a) Để \(\frac{2}{x-1}< 0\)

\(\Leftrightarrow x-1< 0\)

\(\Leftrightarrow x< 1\)

b) Để \(\frac{x-7}{x-11}>0\)

\(\Leftrightarrow\begin{cases}x-7>0\\x-11>0\end{cases}\) hoặc \(\begin{cases}x-7< 0\\x-11< 0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>7\\x>11\end{cases}\) hoặc \(\begin{cases}x< 7\\x< 11\end{cases}\)

\(\Leftrightarrow x>11\)  hoặc \(x< 7\)

d) Để \(\frac{x+10}{x-7}< 0\)

\(\Leftrightarrow\begin{cases}x+10>0\\x-7< 0\end{cases}\) hoặc \(\begin{cases}x+10< 0\\x-7>0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>-10\\x< 7\end{cases}\) hoặc \(\begin{cases}x< -10\\x>7\end{cases}\) (vô nghiệm)

\(\Leftrightarrow-10< x< 7\)