\(\dfrac{3x-1}{x^2-4}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2021

\(ĐK:x^2-4=\left(x-2\right)\left(x+2\right)\ne0\Leftrightarrow x\ne\pm2\)

25 tháng 12 2021

Để \(\dfrac{3x-1}{x^2-4}\) xác định thì \(x^2-4\) không bằng 0

=> có 2 trường hợp: x = 2 hoặc x = -2

9 tháng 6 2021

`a)ĐK:(x+1)(2x-6) ne 0`

`<=>(x+1)(x-3) ne 0`

`<=> x ne -1,x ne 3`

`b)C=(3x^2+3x)/((x+1)(2x-6))`

`=(3x(x+1))/((x+1)(2x-6))`

`=(3x)/(2x-6)`

`C=1`

`=>3x=2x-6`

`<=>x=-6(tm)`

Vậy `x=-6`

8 tháng 12 2020

Để phân thức A được xác định thì x khác -2 x khác 3 

8 tháng 12 2020

Mk có tâm rút gọn hộ bạn luôn rồi nè =)) 

a, ĐK : \(x\ne-2;3\)

b, \(A=\frac{8-x}{\left(x+2\right)\left(x-3\right)}+\frac{2}{x+2}\)

\(=\frac{8-x}{\left(x+2\right)\left(x-3\right)}+\frac{2\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}=\frac{8-x+2x-6}{\left(x+2\right)\left(x-3\right)}\)

\(=\frac{x-2}{\left(x-2\right)\left(x-3\right)}=\frac{1}{x-3}\)

9 tháng 6 2021

a, ĐKXĐ: \(x\ne1;x\ne-1\)

b, Với \(x\ne1;x\ne-1\)

\(B=\left[\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\left[\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\dfrac{5}{x^2-1}\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =4\)

=> ĐPCM

28 tháng 9 2016

\(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

Suy ra : \(A^2\le2\Rightarrow A\le\sqrt{2}\)

Vậy Max A = \(\sqrt{2}\) khi \(\hept{\begin{cases}x=y\\x=z\\x+y+z=\sqrt{2}\end{cases}\Leftrightarrow}x=y=z=\frac{\sqrt{2}}{3}\)

28 tháng 9 2016

tuyệt

a: ĐKXĐ: \(x\notin\left\{-1;3\right\}\)

b: \(A=\dfrac{3x\left(x+1\right)}{\left(x+1\right)\left(2x-6\right)}=\dfrac{3x}{2x-6}\)

Để A=0 thì 3x=0

hay x=0

15 tháng 8 2016

Ta có : \(\frac{bc}{\sqrt{3a+bc}}=\frac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\frac{bc}{\sqrt{a^2+ab+ac+bc}}=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

Áp dụng bđt Cauchy , ta có : \(\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{bc}{2}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

Tương tự : \(\frac{ac}{\sqrt{3b+ac}}=\frac{ac}{\sqrt{\left(a+b\right)\left(b+c\right)}}\le\frac{ac}{2}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)\(\frac{ab}{\sqrt{3c+ab}}=\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\frac{ab}{2}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)

\(\Rightarrow P=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{ac}{\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{ab}{\sqrt{\left(a+c\right)\left(c+b\right)}}\)

             \(\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ac}{a+b}+\frac{ac}{b+c}\right)\)

 \(\Rightarrow P\le\frac{1}{2}\left(\frac{ab+bc}{a+c}+\frac{ab+ac}{b+c}+\frac{bc+ac}{a+b}\right)=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)

Suy ra : Max P \(=\frac{3}{2}\Leftrightarrow a=b=c=1\)

15 tháng 8 2016

đây nhé Câu hỏi của Steffy Han - Toán lớp 8 | Học trực tuyến

14 tháng 11 2021

\(a,ĐK:x\ne3;x\ne-2\\ b,A=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+2\right)}=\dfrac{x-3}{x+2}\\ c,A\in Z\Leftrightarrow\dfrac{x+2-5}{x+2}=1-\dfrac{5}{x+2}\in Z\\ \Leftrightarrow x+2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow x\in\left\{-7;-3;-1;3\right\}\left(tm\right)\)