K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2022

https://olm.vn/cau-hoi/trong-khong-gian-oxyz-cho-2-diem-a210-va-b040-xet-diem-s-thay-doi-luon-thuoc-truc-oz-goi-k-la-trung-diem-sb-h-la-hinh-chieu-vuong-goc-cua.6496889055212

NV
16 tháng 7 2022

\(y'=3x^2-2\left(m+1\right)x-\left(m^2-2m\right)\)

Hàm nghịch biến trên (1;2) khi và chỉ khi \(y'\le0;\forall x\in\left(1;2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}3.y'\left(1\right)\le0\\3.y'\left(2\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3-2\left(m+1\right)-\left(m^2-2m\right)\le0\\12-4\left(m+1\right)-\left(m^2-2m\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow...\)

11 tháng 8 2018

y'=2x2-2(2m-3)x+2(m2-3m)=2(x-m)(x-m+3) => h/s nghịch biến trên (m-3; m) => YCBT <=> m-3 =<1 và 3=<m <=> 3=<m=<4

5 tháng 1 2019

.

28 tháng 7 2019
https://i.imgur.com/6aR3ny6.jpg
28 tháng 7 2019

bài 1 bạn dò lại xem. Còn bài 2 tương tự

AH
Akai Haruma
Giáo viên
18 tháng 9 2020

Câu 2:

ĐK: $m\not\in (-1;+\infty)$
$y=\frac{mx+4}{x+m}\Rightarrow y'=\frac{m^2-4}{(x+m)^2}$

Để $y$ nghịch biến trên khoảng $(-\infty; 1)$ thì:

\(\left\{\begin{matrix} m\not\in (-1;+\infty)\\ y'=\frac{m^2-4}{(x+m)^2}\leq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\not\in (-1;+\infty)\\ -2\leq m\leq 2\end{matrix}\right.\)

Với $m$ nguyên ta suy ra $m=-1; -2$. Vậy có 2 giá trị nguyên của $m$ thỏa mãn.

AH
Akai Haruma
Giáo viên
18 tháng 9 2020

Câu 1:

Để $y$ đồng biến trên $(-\infty; +\infty)$ thì:

$y'=3x^2-2(2m-1)x+(2-m)\geq 0$ với mọi $x\in\mathbb{R}$

Điều này xảy ra khi: $\Delta'=(2m-1)^2-3(2-m)\leq 0$

$\Leftrightarrow 4m^2-m-5\leq 0$

$\Leftrightarrow (4m-5)(m+1)\leq 0$

$\Leftrightarrow -1\leq m\leq \frac{5}{4}$

AH
Akai Haruma
Giáo viên
5 tháng 7 2017

Lời giải:

a)

Hàm $y$ đồng biến trên khoảng xác định khi mà

\(y'=3x^2-6(2m+1)x+12m+5\geq 0\)

\(\Leftrightarrow \Delta'=9(2m+1)^2-3(12m+5)\leq 0\)

\(\Leftrightarrow -\sqrt{\frac{1}{6}}\leq m\leq \sqrt{\frac{1}{6}}\)

b) Hàm $y$ đồng biến trên TXĐ khi:

\(y'=3mx^2-2(2m-1)x+m-2\geq 0\) với mọi \(x\in\mathbb{R}\)

Để đảm bảo điều trên xảy ra với mọi $x$ thì \(m>0\)

Khi đó \(\Delta'=(2m-1)^2-3m(m-2)\leq 0\)

\(\Leftrightarrow (m+1)^2\leq 0\) (vô lý)

Do đó không tồn tại $m$ thỏa mãn

5 tháng 8 2020

Có tồn tại m mà bạn

NV
5 tháng 8 2020

\(y'=f\left(x\right)=3x^2-2\left(m+2\right)x+2m-3\)

Do \(a=3>0\Rightarrow\) hàm có khoảng nghịch biến duy nhất \(\left(x_1;x_2\right)\) khi \(\Delta>0\)

Để hàm số nghịch biến trên khoảng đã cho:

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m+2\right)^2-3\left(2m-3\right)>0\\x_1\le-2< 5\le x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m+13>0\left(luôn-đúng\right)\\f\left(-2\right)\le0\\f\left(5\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6m+17\le0\\-8m+52\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

DD
8 tháng 10 2021

\(y=x^3-mx^2+\left(1-2m\right)x+1\)

\(y'=3x^2-2mx+1-2m\)

Để đồ thị hàm số đã cho có hai cực trị nằm về hai phía của trục tung thì phương trình \(y'=0\)có hai nghiệm phân biệt \(x_1,x_2\)thỏa mãn \(x_1x_2< 0\).

Ta có: \(y'=0\Leftrightarrow3x^2-2mx+1-2m=0\)(1)

Để (1) có hai nghiệm phân biệt thỏa mãn \(x_1x_2< 0\)thì: 

\(\hept{\begin{cases}\Delta'=m^2-3\left(1-2m\right)>0\\\frac{1-2m}{3}< 0\end{cases}}\Leftrightarrow m>\frac{1}{2}\).

Vậy \(m>\frac{1}{2}\)thỏa mãn ycbt. 

NV
8 tháng 8 2020

1.

\(y'=6x^2+3m\)

Để hàm nghịch biến trên \(\left(1;2\right)\Leftrightarrow y'=0\) có 2 nghiệm pb thỏa mãn \(x_1\le1< 2\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\sqrt{\frac{-m}{2}}\le2\end{matrix}\right.\) \(\Leftrightarrow-4\le m< 0\)

2.

Bạn coi lại đề, biểu thức y không hợp lý

NV
10 tháng 8 2020

\(y'=f\left(x\right)=x^2+2\left(m+1\right)x+3m-2\)

Để hàm số nghịch biến trên \(\left[-8;8\right]\Leftrightarrow f\left(x\right)=0\) có 2 nghiệm pb thỏa mãn \(x_1\le-8< 8\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(-8\right)\le0\\f\left(8\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}64-16\left(m+1\right)+3m-2\le0\\64+16\left(m+1\right)+3m-2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge\frac{46}{13}\\m\ge-\frac{78}{19}\end{matrix}\right.\) \(\Rightarrow m\ge\frac{46}{13}\)

NV
13 tháng 3 2019

\(y'=-3x^2+6x+m\)

Để hàm số nghịch biến trên \(\left(0;+\infty\right)\Rightarrow y'\le0\) \(\forall x>0\)

\(\Rightarrow-3x^2+6x+m\le0\Leftrightarrow3x^2-6x\ge m\)

Đặt \(f\left(x\right)=3x^2-6x\Rightarrow m\le\min\limits_{\left(0;+\infty\right)}f\left(x\right)=f\left(1\right)=-3\)

\(\Rightarrow m\le-3\)