\(\left(m-1\right)x^2+2\left(m-1\right)-m\) ≤ 0...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 2 2020

Chắc đề đúng là \(\left(m-1\right)x^2+2\left(m-1\right)x-m\le0\)

Để BPT đã cho có tập nghiệm \(S=\left[a;b\right]\) hữu hạn thì:

\(\left\{{}\begin{matrix}m-1>0\\\Delta'=\left(m-1\right)^2+4m\left(m-1\right)>0\end{matrix}\right.\) \(\Rightarrow m>1\)

Khi đó a; b sẽ là nghiệm của pt bậc 2

\(\Rightarrow\left\{{}\begin{matrix}a+b=-2\\ab=\frac{m}{1-m}\end{matrix}\right.\)

\(a^2+b^2+ab=6\)

\(\Leftrightarrow\left(a+b\right)^2-ab-6=0\)

\(\Leftrightarrow\frac{m}{m-1}-2=0\Rightarrow m=2\)

6 tháng 2 2020

cảm ơn bạnhaha

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

6 tháng 4 2017

\(\left\{{}\begin{matrix}2x-\left(m^2+m+1\right)y=-m^2-9\left(1\right)\\m^4x+\left(2m^2+1\right)y=1\left(2\right)\end{matrix}\right.\)

rút x từ (1) thế vào (2)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\left(m^2+m+1\right)y-m^2-9}{2}\left(3\right)\\m^4\left[\dfrac{\left(m^2+m+1\right)y-m^2-9}{2}\right]+\left(2m^2+1\right)y=1\left(4\right)\end{matrix}\right.\)

\(\left(4\right)\Leftrightarrow m^4\left(m^2+m+1\right)y-m^4\left(m^2+9\right)+2\left(2m^2+1\right)y=2\)

\(\Leftrightarrow\left[m^4\left(m^2+m+1\right)+4m^2+2\right]y=m^4\left(m^2+9\right)+2\)

\(\Leftrightarrow Ay=B\)

Taco

\(\left\{{}\begin{matrix}m^2+m+1=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall m\in R\\4m^2+2>0\forall m\in R\\m^4\left(m^2+9\right)>0\forall m\in R\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A>0\forall m\in R\\B>0\forall m\in R\end{matrix}\right.\)

\(\Rightarrow y>0\forall m\in R\)

Kết luận không có m thủa mãn

Câu 1: D

Câu 3: C