K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2017

Để phân thức xác định ta có: Cách tìm điều kiện để phân thức được xác định cực hay, có đáp án | Toán lớp 8 có nghĩa:

Cách tìm điều kiện để phân thức được xác định cực hay, có đáp án | Toán lớp 8

Vậy với x ≠ -3 và x ≠ ½ thì phân thức đã cho được xác định

18 tháng 4 2017

13 tháng 5 2018

Để phân thức có nghĩa:

x 2 + 5 x + 4 ≠ 0

⇔ (x + 4)(x + 1) ≠ 0

⇔ x ≠ -4, x ≠ -1

Vậy điều kiện để phân thức xác định là x ≠ -4 và x ≠ -1

11 tháng 11 2021

Bài 1: 

c: ĐKXĐ: \(x\notin\left\{-1;3\right\}\)

a) ĐK: \(x-5\ne0\Leftrightarrow x\ne5\)

b)

ĐK:  \(\left(\dfrac{1}{2}x+4\right)\ne0\Leftrightarrow\dfrac{1}{2}x\ne-4\\ \Leftrightarrow x\ne-8\)

c)ĐK:

 \(-2x-10\ne0\\ \Leftrightarrow-2x\ne10\\ \Leftrightarrow x\ne-5\)

a) ĐKXĐ: \(x\ne5\)

b) ĐKXĐ: \(x\ne-8\)

c) ĐKXĐ: \(x\ne-5\)

6 tháng 1 2018

1) \(\frac{3}{x^2-4y^2}\)

\(=\frac{3}{\left(x-2y\right)\left(x+2y\right)}\)

Phân thức xác định khi \(\left(x-2y\right)\left(x+2y\right)\ne0\)

\(\Rightarrow\hept{\begin{cases}x-2y\ne0\\x+2y\ne0\end{cases}}\Rightarrow x\ne\pm2y\)

2) \(\frac{2x}{8x^3+12x^2+6x+1}\)

\(=\frac{2x}{\left(2x+1\right)^3}\)

Phân thức xác định khi \(\left(2x+1\right)^3\ne0\)

\(\Rightarrow2x+1\ne0\)

\(\Rightarrow x\ne-\frac{1}{2}\)

3) \(\frac{5}{2x-3x^2}\)

\(=\frac{5}{x\left(2-3x\right)}\)

Phân thức xác định khi : \(x\left(2-3x\right)\ne0\)

\(\Rightarrow\hept{\begin{cases}x\ne0\\2-3x\ne0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x\ne0\\x\ne\frac{2}{3}\end{cases}}\)

\(\dfrac{x}{4+2a}\) có nghĩa khi \(a\ne-2\)

\(\dfrac{y}{4-2a}\)có nghĩa khi \(a\ne2\)

\(\dfrac{z}{4-a^2}\)có nghĩa khi \(a\ne\pm2\)

MTC: \(2\left(2+a\right)\left(2-a\right)\)

21 tháng 12 2018

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

21 tháng 12 2018

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3

9 tháng 2 2021

a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne2\\x\ne3\end{matrix}\right.\)

Ta có : \(P=\dfrac{2x\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{4}{\left(x-2\right)\left(x-3\right)}-\dfrac{x-2}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{2x\left(x-3\right)+4-x+2}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-6x-x+6}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{2x^2-7x+6}{\left(x-2\right)\left(x-3\right)}=\dfrac{\left(x-2\right)\left(2x-3\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x-3}{x-3}\)

b, Ta có : \(P=\dfrac{2x-3}{x-3}=\dfrac{2x-6+3}{x-3}=2+\dfrac{3}{x-3}\)

- Để P là số nguyên \(\Leftrightarrow x-3\in\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow x\in\left\{4;3;6;0\right\}\)

Vậy ...

9 tháng 2 2021

a ĐKXĐ : \(x\ne2,x\ne3\)

\(\Rightarrow P=\dfrac{2x\left(x-3\right)+4-\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-6x+4-x+2}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-7x+6}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2-7x+6}{x^2-5x+6}\)b Ta có P = \(\dfrac{2x^2-7x+6}{x^2-5x+6}=\dfrac{x^2-5x+6+x^2-2x}{x^2-5x+6}=1+\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=1+\dfrac{x}{x-3}\)

Để P\(\in Z\) \(\Leftrightarrow1+\dfrac{x}{x-3}\in Z\) \(\Rightarrow\dfrac{x}{x-3}\in Z\) \(\Rightarrow x⋮x-3\) \(\Rightarrow x-3+3⋮x-3\)

\(\Rightarrow3⋮x-3\) \(\Rightarrow\left(x-3\right)\in\left\{-3;-1;1;3\right\}\) \(\Rightarrow x\in\left\{0;2;4;6\right\}\) 

Thử lại ta thấy đúng 

Vậy...