Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:\(x\ne\pm2;x\ne-3;x\ne0\)
\(P=1+\frac{x-3}{x^2+5x+6}\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right]\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left(\frac{2}{x-2}-\frac{x}{x^2-4}-\frac{1}{x+2}\right)\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\cdot\frac{2x+4-x-x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=1+\frac{8\left(x-3\right)}{\left(x+2\right)^2\left(x+3\right)\left(x-2\right)}\)
Đề sai à ??
Câu 1:
a) \(2x^2+5x-3=\left(2x^2+6x\right)-\left(x+3\right)\)
\(=2x\left(x+3\right)-\left(x+3\right)=\left(x+3\right)\left(2x-1\right)\)
b) \(x^4+2009x^2+2008x+2009\)
\(=\left(x^4-x\right)+\left(2009x^2+2009x+2009\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2009\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2009\right)\)
c) \(\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]=-16\) (đã sửa đề)
\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16=0\)
\(\Leftrightarrow\left(x^2+10x+20\right)^2-16+16=0\)
\(\Leftrightarrow\left(x^2+10x+20\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)^2-5=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5-\sqrt{5}\\x=-5+\sqrt{5}\end{cases}}\)
Câu 1.
a) 2x2 + 5x - 3 = 2x2 + 6x - x - 3 = 2x( x + 3 ) - ( x + 3 ) = ( x + 3 )( 2x - 1 )
b) x4 + 2009x2 + 2008x + 2009
= x4 + 2009x2 + 2009x - x + 2009
= ( x4 - x ) + ( 2009x2 + 2009x + 2009 )
= x( x3 - 1 ) + 2009( x2 + x + 1 )
= x( x - 1 )( x2 + x + 1 ) + 2009( x2 + x + 1 )
= ( x2 + x + 1 )[ x( x - 1 ) + 2009 ]
= ( x2 + x + 1 )( x2 - x + 2009 )
c) ( x + 2 )( x + 4 )( x + 6 )( x + 8 ) = 16 ( xem lại đi chứ không phân tích được :v )
Câu 2.
3x2 + x - 6 - √2 = 0
<=> ( 3x2 - 6 ) + ( x - √2 ) = 0
<=> 3( x2 - 2 ) + ( x - √2 ) = 0
<=> 3( x - √2 )( x + √2 ) + ( x - √2 ) = 0
<=> ( x - √2 )[ 3( x + √2 ) + 1 ] = 0
<=> \(\orbr{\begin{cases}x-\sqrt{2}=0\\3\left(x+\sqrt{2}\right)+1=0\end{cases}}\)
+) x - √2 = 0 => x = √2
+) 3( x + √2 ) + 1 = 0
<=> 3( x + √2 ) = -1
<=> x + √2 = -1/3
<=> x = -1/3 - √2
Vậy S = { √2 ; -1/3 - √2 }
Câu 3.
A = x( x + 1 )( x2 + x - 4 )
= ( x2 + x )( x2 + x - 4 )
Đặt t = x2 + x
A = t( t - 4 ) = t2 - 4t = ( t2 - 4t + 4 ) - 4 = ( t - 2 )2 - 4 ≥ -4 ∀ t
Dấu "=" xảy ra khi t = 2
=> x2 + x = 2
=> x2 + x - 2 = 0
=> x2 - x + 2x - 2 = 0
=> x( x - 1 ) + 2( x - 1 ) = 0
=> ( x - 1 )( x + 2 ) = 0
=> x = 1 hoặc x = -2
=> MinA = -4 <=> x = 1 hoặc x = -2
a: \(M=2\left[\left(a+b\right)^3-3ab\left(a+b\right)\right]-3\left[\left(a+b\right)^2-2ab\right]\)
\(=2\left(1-3ab\right)-3\left(1-2ab\right)\)
\(=2-6ab-3+6ab=-1\)
b: \(4x^4+2x^2+a⋮x-2\)
\(\Leftrightarrow4x^4-8x^3+8x^3-16x^2+14x^2-56+a+56⋮x-2\)
=>a+56=0
=>a=-56
c: \(A=x^2+8x+16+4y^2+4y+1-34\)
\(=\left(x+4\right)^2+\left(2y+1\right)^2-34>=-34\)
Dấu = xảy ra khi x=-4 và y=-1/2
d: \(\left(x+1\right)\left(2-x\right)-\left(3x+5\right)\left(x+2\right)=-4x^2+2\)
\(\Leftrightarrow2x-x^2+2-x-3x^2-6x-5x-10=-4x^2+2\)
=>-4x^2-10x-8=-4x^2+2
=>-10x=10
=>x=-1
x^2-5x-3=0
\(\text{Δ}=\left(-5\right)^2-4\cdot1\cdot\left(-3\right)=25+12=37\)>0
=>PT có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{5-\sqrt{37}}{2}\\x_2=\dfrac{5+\sqrt{37}}{2}\end{matrix}\right.\)
e: \(\left(a-b\right)^2+4ab\)
\(=a^2-2ab+b^2+4ab\)
\(=a^2+2ab+b^2=\left(a+b\right)^2\)
Tìm x,biết:
a/ x + 5x2 =0
⇔x ( 1 + 5x ) = 0
\(\Leftrightarrow\) x = 0 hoặc 1 + 5x = 0
1) x = 0
2) 1+ 5x = 0 \(\Leftrightarrow\) x = \(\frac{-1}{5}\)
Vậy: S = \(\left\{0;\frac{-1}{5}\right\}\)
b/x+1=(x+1)2
\(\Leftrightarrow\) (x+1) - (x+1)2 = 0
\(\Leftrightarrow\) ( x+ 1)(1-x-1) = 0
\(\Leftrightarrow\) (x+1).(-x) = 0
\(\Leftrightarrow\) x+1 = 0 hoặc x = 0
\(\Leftrightarrow\) x= -1 ; 0
Vậy: S=\(\left\{-1;0\right\}\)
c/ x3+x=0
\(\Leftrightarrow\) x(x2 + 1) = 0
\(\Leftrightarrow\) x = 0 hoặc x2 + 1 = 0
Ta có : x2 + 1 \(\ge\) 0 vs mọi x
Vậy: S = \(\left\{0\right\}\)
d/5x(x−2)−(2−x)=0
\(\Leftrightarrow\) 5x(x-2) + (x - 2) = 0
\(\Leftrightarrow\) (x - 2)(5x+1) = 0
\(\Leftrightarrow\) x - 2 = 0 hoặc 5x+ 1 = 0
\(\Leftrightarrow\) x = 2 hoặc x = \(\frac{-1}{5}\)
Vậy: S = \(\left\{\frac{-1}{5};2\right\}\)
g/ x(x−4)+(x−4)2=0
⇔ (x - 4)( x+x-4) = 0
\(\Leftrightarrow\) x - 4 = 0 hoặc 2x-4=0
\(\Leftrightarrow\) x = 4 hoặc x = 2
Vậy: S= \(\left\{2;4\right\}\)
h/ x2−3x=0
⇔x (x-3) = 0
\(\Leftrightarrow\) x = 0 hoặc x = 3
Vậy: S = \(\left\{0;3\right\}\)
Vậy: S= \(\left\{0;3\right\}\)
i/4x(x+1)=8(x+1)
⇔4x(x+1)-8(x+1) = 0
\(\Leftrightarrow\) 4(x+1) (x - 2) = 0
\(\Leftrightarrow\) x+1 = 0 hoặc x - 2 = 0
\(\Leftrightarrow\) x= -1 hoặc x = 2
Vậy: S=\(\left\{-1;2\right\}\)
a ) bậc nhất một ẩn \(\Leftrightarrow a-\sqrt{5}\ne0\)
\(\Leftrightarrow a\ne\sqrt{5}\)
c ) bậc nhất một ẩn \(\Leftrightarrow a^2-1\ne0\)
\(\Leftrightarrow a^2\ne1\)
\(\Leftrightarrow a\ne\pm1\)