K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 5 2019

\(M\in\Delta\Rightarrow M\left(a;-a-2\right)\)

\(\Rightarrow\overrightarrow{MA}=\left(1-a;a+4\right)\) ; \(\overrightarrow{MB}=\left(-a;a+3\right)\); \(\overrightarrow{MC}=\left(-2-a;a+3\right)\)

\(\Rightarrow\overrightarrow{u}=\overrightarrow{MA}+2\overrightarrow{MB}+\overrightarrow{MC}=\left(-1-4a;4a+13\right)\)

\(\Rightarrow\left|\overrightarrow{u}\right|=\sqrt{\left(-1-4a\right)^2+\left(4a+13\right)^2}\)

\(=\sqrt{32a^2+112a+170}=\sqrt{2\left(4a+7\right)^2+72}\ge\sqrt{72}\)

\(\Rightarrow\left|\overrightarrow{u}\right|_{min}\) khi \(4a+7=0\Rightarrow a=-\frac{7}{4}\Rightarrow M\left(-\frac{7}{4};-\frac{1}{4}\right)\)

8 tháng 5 2019

Thank you 💓

27 tháng 12 2023

a)  Gọi E là trung điểm AB \(\Rightarrow\) \(\overrightarrow{IA}+\overrightarrow{IB}=2\overrightarrow{IE}\)

 \(\overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0}\)

\(2\overrightarrow{IE}+3\overrightarrow{IC}=\overrightarrow{0}\)

A B C E I M d

b) \(\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|\)

\(=\left|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}+3\overrightarrow{MI}+3\overrightarrow{IC}\right|\)

\(=5MI\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|min\Leftrightarrow MImin\)

                                           \(\Leftrightarrow\) M là hình chiếu của I trên d

8 tháng 5 2016

a. Gọi I là trung điểm AB khi đó \(I\left(-1;2\right)\) và \(\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MI}\) với mọi M

Do đó \(M\in\Delta\) mà \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) nhỏ nhất khi và chỉ khi M là hình chiếu của I trên \(\Delta\)

Gọi \(\left(x;y\right)\) là tọa độ hình chiếu của I trên \(\Delta\). Khi đó ta có hệ phương trình :

\(\begin{cases}x+y+1=0\\\frac{x+1}{1}=\frac{y-2}{1}\end{cases}\)    \(\Leftrightarrow\begin{cases}x+y+1=0\\x-y+3=0\end{cases}\)

Giải hệ thu được \(x=-2;y=1\) Vạy điểm \(M\in\Delta\) mà \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) nhỏ nhất là \(M\equiv I\left(-2;1\right)\)

 

 

8 tháng 5 2016

b) gọi J là điểm thỏa mãn \(2\overrightarrow{JA}+3\overrightarrow{JB}\)=0 khi đó \(J\left(-\frac{8}{5};\frac{9}{5}\right)\) và với mọi điểm M của mặt phẳng đều có

                                            \(2MA^2+3MB^2=2JA^2+3JB^2+5MJ^2\)

suy ra \(M\in\Delta\)mà \(2MA^2+3MB^2\)nhỏ nhất khi và chỉ khi M là hình chiếu của J trên\(\Delta\)

Gọi (x;y) là tọa độ hình chiếu của J trên \(\Delta\).khi đó ta có phương trình

                                    \(\begin{cases}x+y+1=0\\x+\frac{8}{5}=y-\frac{9}{5}\end{cases}\)\(\Leftrightarrow\begin{cases}x+y+1=0\\x-y-\frac{17}{5}=0\end{cases}\)

Giải hệ thu được : \(x=\frac{5}{6};y=-\frac{11}{5}\)

Vậy điểm M cần tìm là : \(M\left(\frac{6}{5};\frac{-11}{5}\right)\)

 

 

NV
2 tháng 1 2024

\(\overrightarrow{AB}=\left(-6;-3\right)=-3\left(2;1\right)\Rightarrow\) đường thẳng AB nhận \(\left(2;1\right)\) là 1 vtcp

Phương trình tham số đường thẳng AB có dạng: \(\left\{{}\begin{matrix}x=5+2t\\y=4+t\end{matrix}\right.\)

Do M thuộc AB nên tọa độ M có dạng \(M\left(5+2t;4+t\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(-2t;-t\right)\\\overrightarrow{MC}=\left(-2-2t;-6-t\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{MA}+\overrightarrow{MC}=\left(-2-4t;-6-2t\right)\)

Đặt \(T=\left|\overrightarrow{MA}+\overrightarrow{MC}\right|=\sqrt{\left(-2-4t\right)^2+\left(-6-2t\right)^2}=\sqrt{20\left(t+1\right)^2+20}\ge\sqrt{20}\)

Dấu "=" xảy ra khi \(t+1=0\Rightarrow t=-1\Rightarrow M\left(3;3\right)\)

18 tháng 2 2021

\(M\in\left(d_1\right)\Rightarrow M\left(x;\dfrac{x+3}{2}\right)\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MI}\right|\)      \(\left(\overrightarrow{IA}=\overrightarrow{BI}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=-\dfrac{1}{2}\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{7}{2}\end{matrix}\right.\Rightarrow I\left(-\dfrac{1}{2};\dfrac{7}{2}\right)\)

\(\Rightarrow\left|\overrightarrow{MA}+\overrightarrow{MB}\right|_{min}\Leftrightarrow\left|\overrightarrow{MI}\right|_{min}\Leftrightarrow\overrightarrow{MI}\perp\overrightarrow{AB}\Leftrightarrow\overrightarrow{MI}.\overrightarrow{AB}=0\)

\(\Leftrightarrow\left(x_I-x_M;y_I-y_M\right).\left(x_B-x_A;y_B-y_A\right)=0\)

\(\Leftrightarrow\left(x_I-x_M\right)\left(x_B-x_A\right)+\left(y_I-y_M\right)\left(y_B-y_A\right)=0\)

\(\Leftrightarrow\left(-\dfrac{1}{2}-x\right).\left(-3\right)+\dfrac{7}{2}-\dfrac{x+3}{2}=0\Rightarrow M\left(...\right)\)

18 tháng 2 2021

\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=2\left|\overrightarrow{MI}\right|\) nhé, đánh thiếu, nhưng nó ko ảnh hưởng gì đến bài toán :v