Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Không vẽ được hình, bạn thông cảm*
Gọi O' là điểm trên IO sao cho \(IO'=\frac{1}{3}IO\)
Xét \(\Delta\)IAO có: \(\frac{IA'}{IA}=\frac{IO'}{IO}\left(=\frac{1}{3}\right)\Rightarrow O'A'//OA\) (định lý Talet đảo)
Do đó: \(\frac{O'A'}{OA}=\frac{IA'}{IA}=\frac{1}{3}\Rightarrow O'A'=\frac{1}{3}R\)
Cmtt ta được: \(O'B'=\frac{1}{3}R;O'C'=\frac{1}{3}R;O'D'=\frac{1}{3}R\)
Xet ΔCMO và ΔICO có
góc CMO=góc ICO
góc IOC chung
=>ΔCMO đồng dạng với ΔICO
=>CM/IC=MO/CO
=>CM/MO=IC/CO
=>CM*CO=MO*IC
=>CM^2*CO=MC*MO*IC
=>\(\dfrac{CM^2}{MO\cdot IC}=\dfrac{CM}{CO}\left(1\right)\)
ΔIEM đồng dạng với ΔCOM do góc IEM=góc MOC và góc EMI=góc OMC
=>IM/IE=CM/CO
=>\(\dfrac{IM\cdot IO}{MC^2}=\dfrac{IE}{IC}\)
mà MA^2=MI*MO
nên \(\dfrac{NA^2}{NC^2}=\dfrac{IE}{IC}\)
nên MB^2/MC^2=IE/IC
=>\(MB\cdot\sqrt{IC}=MC\cdot\sqrt{IE}\)
Cho (I,R) nội tiếp ΔABC. CMR
a) IA+IB+IC≥6r
b) \(\frac{IA^2}{bc}+\frac{IB^2}{ac}+\frac{IC^2}{ab}=1\)
\(\left(\frac{ID}{AD}+\frac{IE}{BE}+\frac{IF}{CF}\right)\left(\frac{AD}{ID}+\frac{BE}{IE}+\frac{CF}{IF}\right)\ge\left(\sqrt{\frac{ID}{AD}}\sqrt{\frac{AD}{ID}}+\sqrt{\frac{IE}{BE}}\sqrt{\frac{BE}{IE}}+\sqrt{\frac{IF}{CF}}\sqrt{\frac{CF}{IF}}\right)^2\)
\(\Rightarrow\frac{AD}{ID}+\frac{BE}{IE}+\frac{CF}{IF}\ge\left(1+1+1\right)^2\Leftrightarrow\frac{IA+ID}{ID}+\frac{IB+IE}{IE}+\frac{IC+IF}{IF}\ge9\)
\(\Rightarrow\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{IF}\ge6\)
Bạn ko hiểu chỗ nào thì hỏi mình nhé!