K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2015

a):2376        b):765501       c);1991

đúng 100% tick cho mình đi

27 tháng 10 2017

2*76 chia hết cho 11 bằng 2376

7*5501 chia hết cho 11 bằng 765501

199* chia hết cho 11 bằng 1991

a) 2376 chia 11 bằng 216

(*) bằng 3

b) 765501 chia 11 bằng 69591

(*) bằng 6

c) 1991 chia 11 bằng 181

(*) bằng 1

28 tháng 12 2014

 

y a nhieu so lam

b)*=5

13 tháng 8 2016

a/ 

1x8y2  chia hết cho 4 và 9

Để 1x8y2 chia hết cho 4 thì hai chứ số tận cùng tạo thành số chia hết cho 4

Vậy y = 1; 3 ; 5 hoặc 7

Để 1x8y2 chia hết cho 9 thì tổng các chứ số chia hết cho 9

Nếu y = 1 thì x = 6

Nếu y = 3 thì x = 4

Nếu y = 5 thì x = 2

Nếu y = 7 thì x = 0

b/ 135x4y⋮5→y∈{0;5}b)135x4y¯⋮5→y∈{0;5}
Xét y=0y=0 ta có1 35x40⋮9→1+3+5+4+x⋮9→13+x⋮9→x=5135x40¯⋮9→1+3+5+4+x⋮9→13+x⋮9→x=5
Xét y=5y=5 ta có 135x45⋮9→1+3+5+4+5+x⋮9→18+x⋮9→x∈{0;9}

30 tháng 9 2017

Câu 1 : * = 3

19 tháng 10 2017

Bài 1 :

a)Ta có :1999\(⋮̸\)5 và 1975 \(⋮\)5

Vậy 1999-1975\(⋮̸\)5

b)Ta có :Số nào có chữ số tận cùng là 0 thì lũy thừa bao nhiêu cũng có chữ số tận cùng là 0.

Số nào có chữ số tận cùng là 1 thì lũy thừa bao nhiêu cũng có chữ số tận cùng là 1.

Vậy 20002001=(............0);20012000=(............1)

\(\Rightarrow\)20002001+20012000=(..........0)+(..........1)=(............1)

Mà 1 \(\ne\) 0;5 nên 20002001+20012000 \(⋮̸\)5

19 tháng 10 2017

Bài 1:

a) A = 1999 - 1975

Ta có: 1999 \(⋮̸\) 5 và 1975 \(⋮\) 5

\(\Rightarrow\) A \(⋮̸\) 5.

b) 20002001 + 20012002

Ta có:

20002001 = \(\overline{...0}\)

20012002 = \(\overline{...1}\)

\(\overline{...0}\) + \(\overline{...1}\) = \(\overline{...1}\) \(\Rightarrow\) 20002001 + 20012002 \(⋮̸\) 5.

Bài 2:

43* ; 7*0.

a) Chia hết cho 8.

- Để 43* \(⋮\) 8 \(\Rightarrow\) * \(\in\) {2}

- Để 7*0 \(⋮\) 8 \(\Rightarrow\) * \(\in\) {2}

b) Chia hết cho 125.

- Để 43* \(⋮\) 125 \(\Rightarrow\) 43* là bội của 125 mà B(25) có chữ số tận cùng là 0 và 5

\(\Rightarrow\) * \(\in\) {0; 5}

Ta có: 430 \(⋮̸\) 125 và 435 \(⋮̸\) 125

\(\Rightarrow\) không có chữ số * thoả mãn đề bài.

- Để 7*0 \(⋮\) 125 \(\Rightarrow\) * \(\in\) {1; 2; 3; 4; ... ; 9}

Ta có các số: 710, 720, 730, 740, 750, 760, 770, 780, 790 đều không chia hết cho 125.

\(\Rightarrow\) không có chữ số * thoả mãn đề bài.

Bài 3: Chứng tỏ rằng:

a) abba chia hết cho 11.

Ta có:

abba = 1000a + 100b + 10b + a

abba = 1001a + 110b

abba = 11 . (91a + 10b)

\(\Rightarrow\) abba \(⋮\) 11.

b) aaabbb chia hết cho 37.

Ta có:

aaabbb = 100000a + 10000a + 1000a + 100b + 10b + b

aaabbb = 111000a + 111b

aaabbb = 37 . (3000a + 3b)

\(\Rightarrow\) aaabbb \(⋮\) 37.

c) ababab chia hết cho 7.

Ta có:

ababab = 100000a + 10000b + 1000a + 100b + 10a + b

ababab = 101010a + 10101b

ababab = 7 . (14430a + 1443b)

\(\Rightarrow\) ababab \(⋮\) 7.

2 tháng 11 2016

Bài 2:

\(x^5=x^3\)

\(\Rightarrow x^5-x^3=0\)

\(\Rightarrow x^3\left(x^2-1\right)=0\)

\(\Rightarrow x^3=0\) hoặc \(x^2-1=0\)

+) \(x^3=0\Rightarrow x=0\)

+) \(x^2-1=0\Rightarrow x^2=1\Rightarrow x=1\) hoặc \(x=-1\)

Vậy \(x\in\left\{0;1;-1\right\}\)

2 tháng 11 2016

mình chả hiểu

 

17 tháng 7 2018

tao cũng ko biết làm LInh à

18 tháng 7 2018

hóa ra đây là nik m ak Dũng 7B