Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện xác định \(\begin{cases}x< 3x+2\ne1\\1-\sqrt{1-4x}>0\\1-4x\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}x>-\frac{2}{3},x\ne-\frac{1}{3}\\1>1-4x\\x\le\frac{1}{4}\end{cases}\)
\(\Leftrightarrow\begin{cases}x>-\frac{2}{3};x\ne-\frac{1}{3}\\x>0\\x\le\frac{1}{4}\end{cases}\)
\(\Leftrightarrow0< x\le\frac{1}{4}\)
Vậy tập xác định : \(D=\)(0;\(\frac{1}{4}\)]
Ta có \(y'=e^{\sqrt[3]{x^2+1}-x}\left(\sqrt[3]{x^2+1}-x\right)+3^{3x-1}\left(3x-1\right)'\ln3\)
\(=e^{\sqrt[3]{x^2+1}-x}\left(\frac{2x}{3\sqrt[3]{\left(x^2+1\right)^2}}-1\right)+3^{3x}\ln3\)
Xét tính chẵn lẻ:
a) TXĐ: D = R \ {π/2 + kπ| k nguyên}
Với mọi x thuộc D ta có (-x) thuộc D và
\(f\left(-x\right)=\frac{3\tan^3\left(-x\right)-5\sin\left(-x\right)}{2+\cos\left(-x\right)}=-\frac{3\tan^3x-5\sin x}{2+\cos x}=-f\left(x\right)\)
Vậy hàm đã cho là hàm lẻ
b) TXĐ: D = R \ \(\left\{\pm\sqrt{2};\pm1\right\}\)
Với mọi x thuộc D ta có (-x) thuộc D và
\(f\left(-x\right)=\frac{\sin\left(-x\right)}{\left(-x\right)^4-3\left(-x\right)^2+2}=-\frac{\sin x}{x^4-3x^2+2}=-f\left(x\right)\)
Vậy hàm đã cho là hàm lẻ
Tìm GTLN, GTNN:
TXĐ: D = R
a) Ta có (\(\left(\sin x+\cos x\right)^2=1+\sin2x\)
Với mọi x thuộc D ta có\(-1\le\sin2x\le1\Leftrightarrow0\le1+\sin2x\le2\Leftrightarrow0\le\left(\sin x+\cos x\right)^2\le2\)
\(\Leftrightarrow0\le\left|\sin x+\cos x\right|\le\sqrt{2}\Leftrightarrow-\sqrt{2}\le\sin x+\cos x\le\sqrt{2}\)
Vậy \(Min_{f\left(x\right)}=-\sqrt{2}\) khi \(\sin2x=-1\Leftrightarrow2x=-\frac{\pi}{2}+k2\pi\Leftrightarrow x=-\frac{\pi}{4}+k\pi\)
\(Max_{f\left(x\right)}=\sqrt{2}\) khi\(\sin2x=1\Leftrightarrow x=\frac{\pi}{4}+k\pi\)
b) Với mọi x thuộc D ta có:
\(-1\le\cos x\le1\Leftrightarrow-2\le2\cos x\le2\Leftrightarrow1\le2\cos x+3\le5\)
\(\Leftrightarrow1\le\sqrt{2\cos x+3}\le\sqrt{5}\Leftrightarrow5\le\sqrt{2\cos x+3}+4\le\sqrt{5}+4\)
Vậy\(Min_{f\left(x\right)}=5\) khi \(\cos x=-1\Leftrightarrow x=\pi+k2\pi\)
\(Max_{f\left(x\right)}=\sqrt{5}+4\) khi \(\cos x=1\Leftrightarrow x=k2\pi\)
c) \(y=\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x\cos^2x\)\(=1-\frac{1}{2}\left(2\sin x\cos x\right)^2=1-\frac{1}{2}\sin^22x\)
Với mọi x thuộc D ta có: \(0\le\sin^22x\le1\Leftrightarrow-\frac{1}{2}\le-\frac{1}{2}\sin^22x\le0\Leftrightarrow\frac{1}{2}\le1-\frac{1}{2}\sin^22x\le1\)
Đến đây bạn tự xét dấu '=' xảy ra khi nào nha :p
a. \(y=\sqrt[3]{1-x}\) có tập xác định \(x\in R\)
b. \(y=\log_3\left(x^2-3x\right)\)
Điều kiện : \(x^2-3x>0\Leftrightarrow\left[\begin{array}{nghiempt}x< 0\\x>0\end{array}\right.\)
\(\Leftrightarrow\) TXĐ \(D=\left(-\infty;0\right)\cup\left(3;+\infty\right)\)
c. \(y=\log_{x^2-4x+4}2013\)
Điều kiện : \(\begin{cases}x^2-4x+4>0\\x^2-4x+4\ne1\end{cases}\)\(\Leftrightarrow\begin{cases}\left(x-2\right)^2>0\\x^2-4x+3>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ne2\\x\ne1\\x\ne3\end{cases}\)
Vậy tập xác định là \(D=R\backslash\left\{1;2;3\right\}\)
\(y'=x^2-\left(3m+2\right)x+2m^2+3m+1\)
\(\Delta=\left(3m+2\right)^2-4\left(2m^2+3m+1\right)=m^2\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3m+2+m}{2}=2m+1\\x_2=\frac{3m+2-m}{2}=m+1\end{matrix}\right.\)
Để hàm số có cực đại, cực tiểu \(\Rightarrow x_1\ne x_2\Rightarrow m\ne0\)
- Nếu \(m>0\Rightarrow2m+1>m+1\Rightarrow\left\{{}\begin{matrix}x_{CĐ}=m+1\\x_{CT}=2m+1\end{matrix}\right.\)
\(\Rightarrow3\left(m+1\right)^2=4\left(2m+1\right)\) \(\Rightarrow3m^2-2m-1=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-\frac{1}{3}< 0\left(l\right)\end{matrix}\right.\)
- Nếu \(m< 0\Rightarrow m+1>2m+1\Rightarrow\left\{{}\begin{matrix}x_{CĐ}=2m+1\\x_{CT}=m+1\end{matrix}\right.\)
\(\Rightarrow3\left(2m+1\right)^2=4\left(m+1\right)\Rightarrow12m^2+8m-1=0\)
\(\Rightarrow\left[{}\begin{matrix}m=\frac{-2+\sqrt{7}}{6}>0\left(l\right)\\m=\frac{-2-\sqrt{7}}{6}\end{matrix}\right.\) \(\Rightarrow\sum m=\frac{4-\sqrt{7}}{6}\)
=\(\sqrt{4x^2-3x-1}'=\left(\left(4x^2-3x-1\right)^{\frac{1}{2}}\right)'=\frac{1}{2}\left(4x^2-3x-1\right)'\left(4x^2-3x-1\right)^{\frac{1}{2}-1}=\frac{1}{2}\left(8x-3\right)\frac{1}{\sqrt{4x^2-3x-1}}\)