\(\sqrt{3}+\sqrt[3]{3}\) làm nghiệm

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2017

\(a^3=140+3.a\)

Vậy a nghiệm của  phương trình.x^3-3x-140 =0

7 tháng 1 2017

nhầm dấu

a^3=140-3a

đa thức cần tim là x^3+3x-140

9 tháng 8 2016

Ta có:

\(x=\sqrt{2}+\sqrt{3}\)

nên  \(x^2=\left(\sqrt{2}+\sqrt{3}\right)^2\)

\(\Leftrightarrow\)  \(x^2=5+2\sqrt{6}\)

\(\Rightarrow\) \(\left(x^2-5\right)^2=\left(2\sqrt{6}\right)^2\)

\(\Leftrightarrow\)  \(x^4-10x^2+25=24\)

hay   \(x^4-10x^2+1=0\)

Đa thức  \(a^4-10a^2+1=0\)  là đa thức hệ số nguyên (bậc dương nhỏ nhất) nhận số \(x\)  làm nghiệm

9 tháng 8 2016
Ta có a = √3 - √(3-√12 +1) = √3 - √(3 - 2√3 + 1) = √3 - √3 + 1 = 1 Thế vào ta có 1-17+m=0 => m=16
9 tháng 8 2016

Ta có:

\(a=\sqrt{3}-\sqrt{3-\sqrt{13-2\sqrt{12}}}=\sqrt{3}-\sqrt{3-\sqrt{\left(\sqrt{12}-1\right)^2}}\)

\(=\sqrt{3}-\sqrt{3-\sqrt{12}+1}=\sqrt{3}-\sqrt{4-2\sqrt{3}}=\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-\sqrt{3}+1\)

nên  \(a=1\)

Vì  \(a\)  là nghiệm của đa thức  \(P\left(x\right)\)  nên  nhất định rằng  \(P\left(x\right)\)  sẽ chứa một nhân tử chung có dạng  \(a-1\)

Ta biểu diễn lại đa thức  \(P\left(x\right)\) như sau:

\(P\left(x\right)=x^9-17x^8+m=\left(a-1\right)A\) 

\(\Rightarrow\)  \(P\left(1\right)=1^9-17.1^8+m=\left(1-1\right)A=0\)

Hay nói cách khác, ta suy ra được  \(m=16\)

DD
18 tháng 6 2021

\(x=3\sqrt{3}-2\Leftrightarrow x+2=3\sqrt{3}\Rightarrow\left(x+2\right)^2=\left(3\sqrt{3}\right)^2\)

\(\Leftrightarrow x^2+4x+4=27\Leftrightarrow x^2+4x-23=0\)

Vậy \(f\left(x\right)=x^2+4x-23\)là một đa thức thỏa mãn ycbt. 

28 tháng 2 2016

Bài 3 nhé bạn đặt cái căn đầu là a ,căn sau là b 

a+b=x

ab=1

Rồi tính lần lượt a+bbằng ẩn x hết 

và mũ 4 cũng vậy rồi lấy 2 số nhân nhau .Bđ là ra