Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(F\left(x\right)=g\left(x\right).\left(x+1\right)+4\)
Giả sử \(g\left(x\right)=r\left(x\right).\left(x^2+1\right)+ax+b\)
Suy ra \(F\left(x\right)=r\left(x\right).\left(x+1\right)\left(x^2+1\right)+\left(ax+b\right)\left(x+1\right)+4\)
Đa thức dư là \(h\left(x\right)=\left(ax+b\right)\left(x+1\right)+4\) ta có \(h\left(x\right)=ax^2+\left(a+b\right)x+\left(b+4\right)\)
Theo giả thiết \(h\left(x\right)\) chia \(\left(x^2+1\right)\) dư \(2x+3\)
\(h\left(x\right)=a\left(x^2+1\right)+\left(a+b\right)x+\left(b-a+4\right)\)
\(\Rightarrow\)\(\hept{\begin{cases}a+b=2\\b-a+4=3\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=\frac{3}{2}\\b=\frac{1}{2}\end{cases}}\)
Vậy đa thức dư là \(h\left(x\right)=\left(\frac{3}{2}x+\frac{1}{2}\right)\left(x+1\right)+4\)
Ta có f(x) chia cho x + 1 dư 4 nên theo bê-du ta có: f(-1) = 4 (1)
Khi chi f(x) cho (x + 1)(x2 + 1) thì phần dư phải là đa thức bậc 2 hay
f(x) = (x + 1)(x2 + 1)Q(x) + ax2 + bx + c
= (x + 1)(x2 + 1)Q(x) + a(x2 + 1)+ bx + c - a
= (x2 + 1)[(x + 1)Q(x) + a] + bx + c - a (2)
Mà f(x) chia cho x2 + 1 dư 2x + 3 (3)
Từ (1), (2), (3) ta suy ra hệ
\(\hept{\begin{cases}b=2\\c-a=3\\a-b+c=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=2\\a=\frac{3}{2}\\c=\frac{9}{2}\end{cases}}\)
Vậy đa thức dư cần tìm là: \(\frac{3}{2}x^2+2x+\frac{9}{2}\)
2x^3+3x^2-x+a x^2+x-1 2x+1 2x^3+x^2 - - 2x^2-x+a 2x^2+x -2x+a -2x-1 - a+1
Để \(A\left(x\right)⋮B\left(x\right)\Leftrightarrow a+1=0\)
\(\Leftrightarrow a=-1\)
Vậy ...