Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Giả sử đa thức cần tìm là $f(x)=ax^2+bx+c$
Cho $x=0$:
$f(0)-f(-1)=0\Leftrightarrow c-(a-b+c)=0\Leftrightarrow -a+b=0(1)$
Cho $x=1$:
$f(1)-f(0)=1\Leftrightarrow a+b+c-c=1\Leftrightarrow a+b=1(2)$
Từ $(1);(2)\Rightarrow a=b=\frac{1}{2}$
Vậy $f(x)=\frac{1}{2}x^2+\frac{1}{2}x+c$ với $c$ là số thực bất kỳ.
Áp dụng tính tổng:
$f(1)-f(0)=1$
$f(2)-f(1)=2$
$f(3)-f(2)=3$
....
$f(n)-f(n-1)=n$
Cộng theo vế:
$\Rightarrow f(n)-f(0)=1+2+3+..+n$
$\Leftrightarrow \frac{1}{2}n^2+\frac{1}{2}n+c-c=S$
$\Leftrightarrow \frac{n(n+1)}{2}=S$
Lời giải:
Giả sử đa thức cần tìm là $f(x)=ax^2+bx+c$
Cho $x=0$:
$f(0)-f(-1)=0\Leftrightarrow c-(a-b+c)=0\Leftrightarrow -a+b=0(1)$
Cho $x=1$:
$f(1)-f(0)=1\Leftrightarrow a+b+c-c=1\Leftrightarrow a+b=1(2)$
Từ $(1);(2)\Rightarrow a=b=\frac{1}{2}$
Vậy $f(x)=\frac{1}{2}x^2+\frac{1}{2}x+c$ với $c$ là số thực bất kỳ.
Áp dụng tính tổng:
$f(1)-f(0)=1$
$f(2)-f(1)=2$
$f(3)-f(2)=3$
....
$f(n)-f(n-1)=n$
Cộng theo vế:
$\Rightarrow f(n)-f(0)=1+2+3+..+n$
$\Leftrightarrow \frac{1}{2}n^2+\frac{1}{2}n+c-c=S$
$\Leftrightarrow \frac{n(n+1)}{2}=S$
Giả sử f(x)=ax2+bx+cf(x)=ax2+bx+c (do đề bài cho là đa thức bậc hai)
Suy ra
f(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+bf(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+b
Mà f(x)−f(x−1)=xf(x)−f(x−1)=x
⇒2ax+a+b=x⇒2ax+a+b=x
Do đó a+b=0a+b=0 và a=1/2a=1/2 từ đó ta suy ra a=1/2;b=−1/2a=1/2;b=−1/2
Do đó f(x)=x22−x2+cf(x)=x22−x2+c
f(n)=1+2+3+...+nf(n)=1+2+3+...+n
Áp dụng điều ta vừa chứng minh được thì:
f(1)−f(0)=1f(1)−f(0)=1
f(2)−f(1)=2f(2)−f(1)=2
....
f(n)−f(n−1)=nf(n)−f(n−1)=n
Do đó
1+2+...+n=f(1)−f(0)+f(2)−f(1)+...+f(n)−f(n−1)=f(n)−f(0)=n22−n2=n(n−1)2
Suy ra
f(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+bf(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+b
Mà f(x)−f(x−1)=xf(x)−f(x−1)=x
⇒2ax+a+b=x⇒2ax+a+b=x
Do đó a+b=0a+b=0 và a=1/2a=1/2 từ đó ta suy ra a=1/2;b=−1/2a=1/2;b=−1/2
Do đó f(x)=x22−x2+cf(x)=x22−x2+c
f(n)=1+2+3+...+nf(n)=1+2+3+...+n
Áp dụng điều ta vừa chứng minh được thì:
f(1)−f(0)=1f(1)−f(0)=1
f(2)−f(1)=2f(2)−f(1)=2
....
f(n)−f(n−1)=nf(n)−f(n−1)=n
Do đó
1+2+...+n=f(1)−f(0)+f(2)−f(1)+...+f(n)−f(n−1)=f(n)−f(0)=n22−n2=n(n−1)2
:3
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
Bài 3 :
1. Thay x = -5 vào f(x) ta được :
\(\left(-5\right)^2-4\left(-5\right)+5=50\)
Vậy x = -5 không là nghiệm của đa thức trên .
Bài 2 :
1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)
=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)
=> \(f_{\left(x\right)}=x^2+4\)
=> \(x^2+4=0\)
Vậy đa thức trên vô nghiệm .
2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)
=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)
=> \(g_{\left(x\right)}=0\)
Vậy đa thức trên vô số nghiệm .
3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)
=> \(h_{\left(x\right)}=x^2-x+1\)
=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)
Vậy đa thức vô nghiệm .
Bài 3:
\(f\left(x\right)=x^2+4x-5.\)
+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:
\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)
\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)
\(\Rightarrow f\left(x\right)=25-20-5\)
\(\Rightarrow f\left(x\right)=5-5\)
\(\Rightarrow f\left(x\right)=0.\)
Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)
Chúc bạn học tốt!
Đấy cũng là đề thi của huyện mình đấy.
Đây là kết quả của mik
Như ta biết đa thức bậc 2 có dạng tổng quát là: \(ax^2+bx+c\) (trong SGK có đấy)
Suy ra: \(f\left(x-1\right)=a\left(x-1\right)^2+b\left(x-1\right)+c\)
Suy ra: \(f\left(x\right)-f\left(x-1\right)=ax^2+bx+c-a\left(x-1\right)^2-b\left(x-1\right)-c\)
\(=2ax-a+b\)(bn sử dụng hằng đẳng thức để tách \(\left(x-1\right)^2=x^2-2x+1\))
Ta có: \(2ax-a+b=x\)\(\Rightarrow\hept{\begin{cases}2a=1\\b-a=0\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=\frac{1}{2}\end{cases}}}\)
Vậy đa thức cần tìm là \(f\left(x\right)=\frac{1}{2}x^2+\frac{1}{2}x+c\)
Phần sau bn tụ áp dụng