\(P\left(x\right)\). Biết \(P\left(0\right)=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019

Ta có: \(P\left(x\right)=b_0+b_1\left(x-0\right)+b_2\left(x-0\right)\left(x-1\right)\)

                      \(=b_0+b_1x+b_2x\left(x-1\right)\)

+) Cho \(x=0\Rightarrow P\left(0\right)=b_0+b_1.0+b_2.0.\left(0-1\right)=25\)

                                 \(\Rightarrow b_0=25\left(1\right)\)

+) Cho \(x=1\Rightarrow P\left(1\right)=b_0+b_1.1+b_2.1\left(1-1\right)=7\)

                                \(\Rightarrow b_0+b_1=7\left(2\right)\)

+) Cho \(x=2\Rightarrow P\left(2\right)=b_0+b_1.2+b_2.2.\left(2-1\right)=-9\)

                                \(\Rightarrow b_0+2b_1+2b_2=-9\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow\hept{\begin{cases}b_0=25\\b_0+b_1=7\\b_0+2b_1+2b_2=-9\end{cases}}\)

                            \(\Rightarrow\hept{\begin{cases}b_0=25\\b_1=-18\\b_2=1\end{cases}}\)

Vậy \(P\left(x\right)=25-18x+x\left(x-1\right)\)

                   \(=x^2-19x+25\)

3 tháng 12 2017

Bài a) nhóm thành 2 nhóm; nhóm thứ nhất gồm số hạng đầu và cuối

bài b) dùng hằng đẳng thức là đc rồi

3 tháng 12 2017

a,Ta có: \(x^3-4x^2-12x+27=x^3+3x^2-7x^2-21x+9x+27=x^2(x+3)-7x(x+3)+9(x+3)=(x+3)(x^2-7x+9)\)b,

\(25(x-y)^2-16(x+y)^2=(5x-5y+4x+4y)(5x-5y-4x-4y)=(9x-y)(x-9y)\)c,\(x^4+x^3+x+1=x^3(x+1)+(x+1)=(x^3+1)(x+1)=(x+1)^2(x^2-x+1)\)d, \(x(x+1)^2+x(x-5)-5(x+1)^2=(x+1)^2(x-5)+x(x-5)=(x-5)(x^2+3x+1)\)e,\(x^2-x-6=x^2-3x+2x-6=x(x-3)+2(x-3)=(x-3)(x+2)\)f,\(x^3-19x-30=x^3-5x^2+5x^2-25x+6x-30=(x-5)(x^2+5x+6)=(x-5)(x^2+2x+3x+6)=(x-5)(x+2)(x+3)\)

3 tháng 12 2017

nãy bài 1 mk gửi thiếu 1 ý

\(x^2y+xy^2-x+y\)

có ai giúp mk ý này k

bài 2 thì k cần lm cũng đc nhé vì mk biết làm rùi còn mỗi ý này thui hu hu

16 tháng 12 2020

đơn giản, cứ áp dụng theo công thức là ra!!!!