Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét f(x)=ax^2 cộg bx cộg c
f(x)-f(x-1)=x
<=>2ax-(a-b)=x
vì phân tích trên là duy nhất suy ra a=b=1/2
nên f(x)=(x^2 cộng x)/2 cộg c (c là hằg số)
cho x=0,1,2,...n rồi cộng lại ta đc:
f(n)-f(0)=1 cộng 2 cộng...cộg n
<=>(x^2 cộg x)/2=1 cộg 2 cộg...cộng n.
Lời giải:
Đặt $f(x)=ax^2+bx+c$ với $a\neq 0; a,b,c\in\mathbb{R}$
Xét điều kiện $f(x)-f(x-1)=2x-6$
Cho $x=0\Rightarrow f(0)-f(-1)=-6\Rightarrow f(-1)=f(0)+6=8$
Cho $x=1\Rightarrow f(1)-f(0)=-4\Rightarrow f(1)=f(0)-4=-2$
Vậy $f(0)=2; f(1)=-2; f(-1)=8$
\(\Leftrightarrow \left\{\begin{matrix} c=2\\ a+b+c=-2\\ a-b+c=8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=2\\ a=1\\ b=-5\end{matrix}\right.\)
Vậy đa thức cần tìm là $x^2-5x+2$
Lời giải:
Đặt $f(x)=ax^2+bx+c$ với $a\neq 0; a,b,c\in\mathbb{R}$
Xét điều kiện $f(x)-f(x-1)=2x-6$
Cho $x=0\Rightarrow f(0)-f(-1)=-6\Rightarrow f(-1)=f(0)+6=8$
Cho $x=1\Rightarrow f(1)-f(0)=-4\Rightarrow f(1)=f(0)-4=-2$
Vậy $f(0)=2; f(1)=-2; f(-1)=8$
\(\Leftrightarrow \left\{\begin{matrix} c=2\\ a+b+c=-2\\ a-b+c=8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=2\\ a=1\\ b=-5\end{matrix}\right.\)
Vậy đa thức cần tìm là $x^2-5x+2$
xét f(x)=ax^2 cộg bx cộg c
f(x)-f(x-1)=x
<=>2ax-(a-b)=x
vì phân tích trên là duy nhất suy ra a=b=1/2
nên f(x)=(x^2 cộng x)/2 cộg c (c là hằg số)
cho x=0,1,2,...n rồi cộng lại ta đc:
f(n)-f(0)=1 cộng 2 cộng...cộg n
<=>(x^2 cộg x)/2=1 cộg 2 cộg...cộng n.
a) Gọi đa thức cần tìm là \(f\left(x\right)=ax+b\)
Do \(f\left(-1\right)=2\) nên thay \(x=-1\) ta có \(-a+b=2\), hay \(b=a+2\)
Do \(f\left(3\right)=-1\) nên thay \(x=3\) ta có \(3a+b=-1\), suy ra \(3a+a+2=-1\)
\(\Rightarrow4a=-3\Rightarrow a=-\dfrac{3}{4}\Rightarrow b=\dfrac{5}{4}\)
Vậy đa thức cần tìm là \(f\left(x\right)=-\dfrac{3}{4}x+\dfrac{5}{4}\)
b) Gọi đa thức cần tìm là \(g\left(x\right)=5x^2+bx+c\)
Do \(g\left(2\right)=5\) nên thay \(x=2\) ta có \(20+2b+c=5\Rightarrow2b+c=-15\)
\(\Rightarrow c=-15-2b\)
Do \(g\left(1\right)=-1\) nên thay \(x=1\) ta có \(5+b+c=-1\Rightarrow b+c=-6\)
\(\Rightarrow b-2b-15=-6\Rightarrow b=-9\Rightarrow c=3\)
Vậy đa thức cần tìm là \(g\left(x\right)=5x^2-9x+3\)
Giả sử f(x)=ax2+bx+cf(x)=ax2+bx+c (do đề bài cho là đa thức bậc hai)
Suy ra
f(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+bf(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+b
Mà f(x)−f(x−1)=xf(x)−f(x−1)=x
⇒2ax+a+b=x⇒2ax+a+b=x
Do đó a+b=0a+b=0 và a=1/2a=1/2 từ đó ta suy ra a=1/2;b=−1/2a=1/2;b=−1/2
Do đó f(x)=x22−x2+cf(x)=x22−x2+c
f(n)=1+2+3+...+nf(n)=1+2+3+...+n
Áp dụng điều ta vừa chứng minh được thì:
f(1)−f(0)=1f(1)−f(0)=1
f(2)−f(1)=2f(2)−f(1)=2
....
f(n)−f(n−1)=nf(n)−f(n−1)=n
Do đó
1+2+...+n=f(1)−f(0)+f(2)−f(1)+...+f(n)−f(n−1)=f(n)−f(0)=n22−n2=n(n−1)21+2+...+n=f(1)−f(0)+f(2)−f(1)+...+f(n)−f(n−1)=f(n)−f(0)=n22−n2=n(n−1)2
chép mạng hay tự làm v @@