\(\frac{64x^3+1}{16x^2-1}=\frac{A}{4x-1}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2019

\(\frac{64x^3+1}{16x^2-1}=\frac{A}{4x-1}\left(x\ne\pm\frac{1}{4}\right)\)

\(\Leftrightarrow\frac{\left(4x+1\right)\left(16x^2+4x+1\right)}{\left(4x+1\right)\left(4x-1\right)}=\frac{A}{4x-1}\)

\(\Leftrightarrow\frac{\left(16x^2+4x+1\right)}{\left(4x-1\right)}=\frac{A}{4x-1}\)

Vậy \(A=\left(16x^2+4x+1\right)\)

27 tháng 11 2019

\(\frac{4x^2+3x-7}{B}=\frac{4x+7}{2x-3}\left(x\ne\frac{3}{2}\right)\)

\(\Leftrightarrow\frac{4x^2+7x-4x-7}{B}=\frac{4x+7}{2x-3}\)

\(\Leftrightarrow\frac{x\left(4x+7\right)-\left(4x+7\right)}{B}=\frac{4x+7}{2x-3}\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(4x+7\right)}{B}=\frac{4x+7}{2x-3}\)

\(\Leftrightarrow\frac{\left(x-1\right)}{B}=\frac{1}{2x-3}\)

\(\Leftrightarrow B=\left(x-1\right)\left(2x-3\right)=2x^2-5x+3\)

21 tháng 5 2021

\(\frac{4}{2x+3}-\frac{7}{3x-5}=0\left(đkxđ:x\ne-\frac{3}{2};\frac{5}{3}\right)\)

\(< =>\frac{4\left(3x-5\right)}{\left(2x+3\right)\left(3x-5\right)}-\frac{7\left(2x+3\right)}{\left(2x+3\right)\left(3x-5\right)}=0\)

\(< =>12x-20-14x-21=0\)

\(< =>2x+41=0< =>x=-\frac{41}{2}\left(tm\right)\)

21 tháng 5 2021

\(\frac{4}{2x-3}+\frac{4x}{4x^2-9}=\frac{1}{2x+3}\left(đk:x\ne-\frac{3}{2};\frac{3}{2}\right)\)

\(< =>\frac{4\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{4x}{\left(2x-3\right)\left(2x+3\right)}-\frac{2x-3}{\left(2x+3\right)\left(2x-3\right)}=0\)

\(< =>8x+12+4x-2x+3=0\)

\(< =>10x=15< =>x=\frac{15}{10}=\frac{3}{2}\left(ktm\right)\)

25 tháng 4 2017

a)\(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)

   \(84x+63-90x+30=175x+140+315\)

    93-6x=175x+455

     -362=181x

       x=-2

25 tháng 4 2017

b)\(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)

   \(\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)

      \(\left(3x+1\right)\left(3x-1-4x-1\right)=0\)

        \(\left(3x+1\right)\left(-x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x+1=0\\-x-2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)

NV
24 tháng 6 2019

b/ \(3-100x+8x^2=8x^2+x-300\)

\(\Leftrightarrow-101x=-303\)

\(\Rightarrow x=3\)

c/ \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)

\(\Leftrightarrow25x+10-80x+10=24x+12-150\)

\(\Leftrightarrow-79x=-158\)

\(\Rightarrow x=2\)

d/ \(3\left(3x+2\right)-\left(3x+1\right)=12x+10\)

\(\Leftrightarrow9x+6-3x-1=12x+10\)

\(\Leftrightarrow-6x=5\)

\(\Rightarrow x=-\frac{5}{6}\)

e/ \(30x-6\left(2x-5\right)+5\left(x+8\right)=210+10\left(x-1\right)\)

\(\Leftrightarrow30x-12x+30+5x+40=210+10x-10\)

\(\Leftrightarrow13x=130\)

\(\Rightarrow x=10\)

NV
24 tháng 6 2019

\(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)

\(\Rightarrow A_{min}=-3\) khi \(x=2\)

\(B=4x^2+4x+11=\left(2x+1\right)^2+10\ge10\)

\(\Rightarrow B_{min}=10\) khi \(x=-\frac{1}{2}\)

\(C=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

\(\Rightarrow C_{min}=-36\) khi \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

\(D=-x^2-8x-16+21=21-\left(x+4\right)^2\le21\)

\(\Rightarrow C_{max}=21\) khi \(x=-4\)

\(E=-x^2+4x-4+5=5-\left(x-2\right)^2\le5\)

\(\Rightarrow E_{max}=5\) khi \(x=2\)

21 tháng 7 2017

thôi mk tl dc rùi

22 tháng 3 2020

a)Đkxđ x≠\(\frac{5}{4}\)

Ta có để \(\frac{2x+3}{4x-5}\)=0=>2x+3=0=>x=\(\frac{3}{2}\)(thỏa mãn)

b)Ta có \(x^2-4x+3=x^2-3x-x+3\)

=x(x-3)-(x-3)

=(x-1)(x-3)

=>Đkxđ x≠1,3

để bài b)=0 duy ra (x-1)(x-2)=0

=>x=1,x=2 đối chiếu đkxđ có x=2 (t/mãn)

c)phân thức tương đương:\(\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}\)

= \(\frac{x+1}{x-1}\)

=>Đkxđ x≠1

Để x+1/x-1=0=>x+1=0

=>x=-1(t/mãn)

22 tháng 3 2020

d) phân thức tương đương

\(\frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+5\right)}\)

=\(\frac{x+2}{x+5}\)=>x≠-5

để phân thức đạt 0 suy ra x+2=0

=>x=-2

e)phân thức tương đương

\(\frac{x\left(x-4\right)\left(x+4\right)}{x\left(x-4\right)\left(x+1\right)}\)

=\(\frac{x+4}{x+1}\)

Đkxđ x khác -1

Để phân thức đạt GT là 0 x+4=0=>x=-4

g)\(\frac{\left(x-1\right)\left(x+1\right)^2}{\left(x-1\right)\left(x^2+x+3\right)}\)

=\(\frac{\left(x+1\right)^2}{x^2+x+3}\)

\(x^2+x+3>0\)(Dễ dàng chứng minh)

=>xϵR

Để phân thức đạt gt là 0 => \(\left(x+1\right)^2=0=>x=-1\)

11 tháng 2 2018

khó thể xem trên mạng

11 tháng 2 2018

bài 1 câu a bỏ x= nhé !

16 tháng 12 2022

a: \(\Leftrightarrow4\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3x^2\)

\(\Leftrightarrow4\cdot\left[\left(x^2+60\right)^2+33x\left(x^2+60\right)+272x^2\right]=3x^2\)

=>4(x^2+60)^2+132x(x^2+60)+1085x^2=0

=>4(x^2+60)^2+62x(x^2+60)+70x(x^2+60)+1085x^2=0

=>2(x^2+60)(2x^2+120+31x)+35x(2x^2+120+31x)=0

=>(2x^2+120+35x)(2x^2+31x+120)=0

=>\(x\in\left\{\dfrac{-35\pm\sqrt{265}}{4};-\dfrac{15}{2};-8\right\}\)

b: Đặt x^2-3x=a

Phương trình sẽ là \(\dfrac{1}{a+3}+\dfrac{2}{a+4}=\dfrac{6}{a+5}\)

\(\Leftrightarrow\dfrac{a+4+2a+6}{\left(a+3\right)\left(a+4\right)}=\dfrac{6}{a+5}\)

=>(3a+10)(a+5)=6(a^2+7a+12)

=>6a^2+42a+72=3a^2+15a+10a+50

=>3a^2+17a+22=0

=>x=-2 hoặc x=-11/3