K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2015

ta tính \(y'=cosx+sinx=\sqrt{2}cos\left(x-\frac{\Pi}{4}\right)\)

giải pt y'=0 ta có

\(\sqrt{2}cos\left(x-\frac{\Pi}{4}\right)=0\Rightarrow x-\frac{\Pi}{4}=\frac{\Pi}{2}+k\Pi\Rightarrow x=\frac{3\Pi}{4}+k\Pi\)

ta tình \(y''=-sinx+cosx\)

ta có \(y''\left(\frac{-\Pi}{4}\right)=\sqrt{2}>0\)hàm số đạt cực tiểu tại x\(\frac{-\Pi}{4}+2k\Pi\)

ta có \(y''\left(\frac{3\Pi}{4}\right)=-\sqrt{2}<0\)hàm số đạt cực đại tại x=\(\frac{3\Pi}{4}+2k\Pi\)

 
12 tháng 8 2017

Hàm số tuần hoàn chu kỳ nên ta xét trên đoạn [− π ; π ].

y′ = − sinx – cosx

y′ = 0 ⇔ tanx = −1 ⇔ x = − π /4 + k π , k ∈ Z

Lập bảng biến thiên trên đoạn [− π ; π ]

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đạt cực đại tại x = − π /4 + k2 π  , đạt cực tiểu tại x = 3 π /4 + k2 π  (k ∈ Z) và

y CD  = y(− π /4 + k2 π ) = 2 ;

y CT  = y(3 π /4 + k2 π ) = − 2  (k∈Z).

17 tháng 4 2017

a) y = sin2x

Hàm số có chu kỳ T = π

Xét hàm số y=sin2x trên đoạn [0;π], ta có:

y' = 2cos2x

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó trên đoạn [0;π] , hàm số đạt cực đại tại π/4 , đạt cực tiểu tại 3π/4 và y C D  = y(π/4) = 1; y C T  = y(3π/4) = −1

Vậy trên R ta có:

y C Đ  = y(π/4 + kπ) = 1;

y C T  = y(3π/4 + kπ) = −1, k∈Z

b) Hàm số tuần hoàn chu kỳ nên ta xét trên đoạn [−π;π].

y′ = − sinx – cosx

y′ = 0 ⇔ tanx = −1 ⇔ x = −π4 + kπ, k∈Z

Lập bảng biến thiên trên đoạn [−π;π]

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đạt cực đại tại x = −π4 + k2π , đạt cực tiểu tại x = 3π4 + k2π (k∈Z) và

y C Đ  = y(−π4 + k2π) = 2 ;

y C T  = y(3π4 + k2π) = − 2  (k∈Z).

c) Ta có:


Do đó, hàm số đã cho tuần hoàn với chu kỳ π.

Ta xét hàm số y trên đoạn [0;π]:


y′ = sin2x

y′ = 0 ⇔ sin2x = 0 ⇔ x = kπ/2 (k∈Z)

Lập bảng biến thiên trên đoạn [0,π]


Từ đó, ta thấy hàm số đạt cực tiểu tại x = kπ/2 với k chẵn, đạt cực đại tại x = kπ/2 với k lẻ, và

y C T  = y(2mπ) = 0; yCT = y(2mπ) = 0;

y C Đ  = y((2m+1)π/2) = 1 (m∈Z)

15 tháng 9 2018

TXĐ: D = R

+ y’ = cos x – sin x.

Giải bài 2 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

+ y’’ = -sin x – cos x = Giải bài 2 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Giải bài 2 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Giải bài 2 trang 18 sgk Giải tích 12 | Để học tốt Toán 12 là các điểm cực đại của hàm số.

Giải bài 2 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Giải bài 2 trang 18 sgk Giải tích 12 | Để học tốt Toán 12 là các điểm cực tiểu của hàm số.

11 tháng 10 2018

Chọn D

3 tháng 7 2019

25 tháng 8 2016

Xét tính chẵn lẻ:

a) TXĐ: D = R \ {π/2 + kπ| k nguyên}

Với mọi x thuộc D ta có (-x) thuộc D và

\(f\left(-x\right)=\frac{3\tan^3\left(-x\right)-5\sin\left(-x\right)}{2+\cos\left(-x\right)}=-\frac{3\tan^3x-5\sin x}{2+\cos x}=-f\left(x\right)\)

Vậy hàm đã cho là hàm lẻ

b) TXĐ: D = R \ \(\left\{\pm\sqrt{2};\pm1\right\}\)

Với mọi x thuộc D ta có (-x) thuộc D và

\(f\left(-x\right)=\frac{\sin\left(-x\right)}{\left(-x\right)^4-3\left(-x\right)^2+2}=-\frac{\sin x}{x^4-3x^2+2}=-f\left(x\right)\)

Vậy hàm đã cho là hàm lẻ

 

25 tháng 8 2016

Tìm GTLN, GTNN:

TXĐ: D = R

a)  Ta có (\(\left(\sin x+\cos x\right)^2=1+\sin2x\)

Với mọi x thuộc D ta có\(-1\le\sin2x\le1\Leftrightarrow0\le1+\sin2x\le2\Leftrightarrow0\le\left(\sin x+\cos x\right)^2\le2\)

\(\Leftrightarrow0\le\left|\sin x+\cos x\right|\le\sqrt{2}\Leftrightarrow-\sqrt{2}\le\sin x+\cos x\le\sqrt{2}\)

Vậy  \(Min_{f\left(x\right)}=-\sqrt{2}\) khi \(\sin2x=-1\Leftrightarrow2x=-\frac{\pi}{2}+k2\pi\Leftrightarrow x=-\frac{\pi}{4}+k\pi\)

\(Max_{f\left(x\right)}=\sqrt{2}\) khi\(\sin2x=1\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

b) Với mọi x thuộc D ta có: 

\(-1\le\cos x\le1\Leftrightarrow-2\le2\cos x\le2\Leftrightarrow1\le2\cos x+3\le5\)

\(\Leftrightarrow1\le\sqrt{2\cos x+3}\le\sqrt{5}\Leftrightarrow5\le\sqrt{2\cos x+3}+4\le\sqrt{5}+4\)

Vậy\(Min_{f\left(x\right)}=5\)  khi \(\cos x=-1\Leftrightarrow x=\pi+k2\pi\)

\(Max_{f\left(x\right)}=\sqrt{5}+4\)  khi \(\cos x=1\Leftrightarrow x=k2\pi\)

c) \(y=\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x\cos^2x\)\(=1-\frac{1}{2}\left(2\sin x\cos x\right)^2=1-\frac{1}{2}\sin^22x\)

Với mọi x thuộc D ta có: \(0\le\sin^22x\le1\Leftrightarrow-\frac{1}{2}\le-\frac{1}{2}\sin^22x\le0\Leftrightarrow\frac{1}{2}\le1-\frac{1}{2}\sin^22x\le1\)

Đến đây bạn tự xét dấu '=' xảy ra khi nào nha :p

12 tháng 7 2017

Đáp án A

NV
17 tháng 9 2020

\(y'=cosx-sinx=0\)

\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

\(y''=-sinx-cosx\)

\(y''\left(\frac{\pi}{4}+k2\pi\right)=-\sqrt{2}< 0\)

\(y''\left(\frac{\pi}{4}+\left(2k+1\right)\pi\right)=\sqrt{2}>0\)

\(\Rightarrow\) Hàm đạt cực đạt tại những điểm thỏa mãn \(x=\frac{\pi}{4}+k2\pi\)

Hàm đạt cực tiểu tại những điểm \(x=\frac{5\pi}{4}+k2\pi\)

19 tháng 8 2018

Chọn C

Ta có HbBHqE1Cth8K.png

JRV1Ph7BIsTj.png.

CeALv91UWmQH.pnggTB2AeCZvXSy.pngzp8OZbArJgRI.png.

5lnnFW0Cj0Cy.pngukYlgYkh3Qhw.png.

Để hàm số đã cho đồng biến trên ji9Ic4ZsR4r7.pngqgGmywVqao2x.pngLH1265kZwb8h.png, RhmuYe8B4oOC.png.

 

YjxW7Jmfq5Zd.pnghX0DkzCAhCNQ.pngYX5W2TKvgD8e.pnglVCYeCMp5b2q.png.