\(\frac{x^2-2x+2}{x^2+2x+2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

\(M=\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2-2x}}\left(x< 0;x\ge2\right)\)

\(=\frac{\left(x+\sqrt{x^2-2x}\right)\left(x+\sqrt{x^2-2x}\right)}{x^2-\sqrt{x^2-2x}^2}-\frac{\left(x-\sqrt{x^2-2x}\right)\left(x-\sqrt{x^2-2x}\right)}{x^2-\sqrt{x^2-2x}^2}\)

\(=\frac{x^2+x\sqrt{x^2-2x}+x\sqrt{x^2-2x}+x^2-2x}{x^2-x^2-2x}-\frac{x^2-x\sqrt{x^2-2x}-x\sqrt{x^2-2x}+x^2-2x}{x^2-x^2-2x}\)

\(=\frac{2x^2+2x\sqrt{x^2-2x}-2x}{-2x}-\frac{2x^2-2\sqrt{x^2-2x}-2x}{-2x}\)

\(=\frac{2x^2+2x\sqrt{x^2-2x}-2x-2x^2+2x\sqrt{x^2-2x}+2x}{-2x}\)

\(=\frac{4x\sqrt{x^2-2x}}{-2x}=-2x\sqrt{x^2-2x}\)

23 tháng 3 2021

Ta có:

\(A=2x^2+y^2+\frac{28}{x}+\frac{1}{y}\)

\(A=\left(\frac{14}{x}+\frac{14}{x}+\frac{7}{4}x^2\right)+\left(\frac{1}{2y}+\frac{1}{2y}+\frac{y^2}{2}\right)+\frac{x^2}{4}+\frac{y^2}{2}\)

Áp dụng BĐT Cauchy cho 3 số dương và BĐT Bunyakovsky dạng cộng mẫu ta có:

\(A\ge3\sqrt[3]{\frac{14}{x}\cdot\frac{14}{x}\cdot\frac{7}{4}x^2}+3\sqrt[3]{\frac{1}{2y}\cdot\frac{1}{2y}\cdot\frac{y^2}{2}}+\frac{\left(x+y\right)^2}{4+2}\)

\(\ge3\cdot7+3\cdot\frac{1}{2}+\frac{3^2}{6}=21+\frac{3}{2}+\frac{3}{2}=24\)

Dấu "=" xảy ra khi: x = 2 , y = 1

NV
10 tháng 3 2019

Giả sử biểu thức xác định

\(\frac{-2}{x-y}-\left(\frac{2xy}{\left(x-y\right)\left(x+y\right)}+\frac{x-y}{2\left(x+y\right)}\right).\frac{2x}{x\left(x+y\right)}\)

\(=\frac{-2}{x-y}-\left(\frac{4xy+\left(x-y\right)^2}{2\left(x-y\right)\left(x+y\right)}\right).\frac{2}{x+y}\)

\(=\frac{-2}{x-y}-\frac{\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)}.\frac{2}{x+y}\)

\(=\frac{-2}{x-y}-\frac{1}{x-y}=\frac{-3}{x-y}=\frac{-3}{2011}\)

10 tháng 3 2019

\(\frac{2}{y-x}\cdot\left(\frac{2xy}{x^2-y^2}+\frac{x-y}{2x+2y}\right):\frac{x^2+xy}{2x}=\frac{2}{y-x}\cdot\left(\frac{4xy}{2\left(x-y\right)\left(x+y\right)}+\frac{\left(x-y\right)^2}{2\left(x+y\right)\left(x-y\right)}\right):\frac{x^2+xy}{2x}\)

\(=\frac{2}{y-x}\cdot\left(\frac{4xy+x^2-2xy+y^2}{2\left(x+y\right)\left(x-y\right)}\right)\cdot\frac{2x}{x\left(x+y\right)}=\frac{2}{y-x}\cdot\frac{\left(x+y\right)^2\cdot2x}{2\left(x+y\right)\left(x-y\right)\cdot x\left(x+y\right)}=\frac{2}{y-x}\cdot\frac{1}{x-y}\)

\(=\frac{2}{-\left(x-y\right)}\cdot\frac{1}{x-y}\)

Mà x - y = 2011

\(\Rightarrow\frac{2}{-\left(x-y\right)}+\frac{1}{x-y}=\frac{-2}{2011}+\frac{1}{2011}=\frac{-1}{2011}\)