\(6x^2+35y^2\)\(=194\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2017

Ta có: \(8x^2+31y^2=2468\)

Mà \(8x^2\ge0\)

\(\Rightarrow31y^2\le2468\)

\(\Rightarrow y^2\le79\)   \(\left(1\right)\)

Lại có: \(8x^2+31y^2=2468⋮2\)

            \(8x^2⋮2\)

\(\Rightarrow31y^2⋮2\)

Mặt khác \(\left(31;2\right)=1\)

\(\Rightarrow y^2⋮2\)  \(\left(2\right)\)

Từ (1) và (2) suy ra \(y^2=0;4;16;36;64\)

Đến đây bạn xét từng trường hợp là được. Cách mình hơi dài, bạn thông cảm

2 tháng 12 2019

a) x2 - 1 = y2

<=> x2 - y2 = 1

<=> (x - y)(x + y) = 1 (*)

Do x; y ∈ N nên x - y; x + y ∈ Z

Từ (*) => x - y; x + y ∈ Ư(1) = {±1}

Ta có 2 TH sau:

+) x - y = 1 và x + y = 1 ...

+) x - y = -1 và x + y = -1 ...

Tự giải tiếp nha =))

Chắc vậy :v

9 tháng 4 2018

 6x2
 + 5y2
 = 74 (1) 
Ta có : 5x2
 + 5y2
 =< 6x2
 + 5y2
 =< 6x2
 + 6y2
<=> 5(x2
 + y2
) =< 74 =< 6(x2
 + y2

<=> 12,3 =< x2
 + y2
 =< 14,8 
<=> 13 =< x2
 + y2
 =< 14 (vì x, y tự nhiên => x2
 + y2
 tự nhiên) 
Trường hợp 1 : x2
 + y2
 = 13 (2) 
Ta có hệ : 
6x2
 + 5y2
 = 74 (1) 
x
2
 + y2
 = 13 (2) 
<=> 6x2
 + 5y2
 = 74 
5x2
 + 5y2
 = 65 
Trừ 2 phương trình : x2
 = 9 <=> x = 3 (vì x >= 0) 
Thay vào (2) y2
 = 13 - x2
 = 13 - 9 = 4 <=> x = 2 
Nghiệm : (x ; y) = (2 ; 3) 
Trường hợp 2 : x2
 + y2
 = 14 (4) 
Ta có hệ : 
6x2
 + 5y2
 = 74 (1) 
x
2
 + y2
 = 14 (3) 
<=> 6x2
 + 5y2
 = 74 
5x2
 + 5y2
 = 70 
Trừ 2 phương trình : x2
 = 4 <=> x = 2 
Thay vào (3) : y2
 = 14 - 4 = 10 <=> y = 10 (loại) 
Vậy phương trình có nghiệm nguyên duy nhất là (x ; y) = (2 ; 3)

9 tháng 4 2018

 6x2
 + 5y2
 = 74 (1) 
Ta có : 5x2
 + 5y2
 =< 6x2
 + 5y2
 =< 6x2
 + 6y2
<=> 5(x2
 + y2
) =< 74 =< 6(x2
 + y2

<=> 12,3 =< x2
 + y2
 =< 14,8 
<=> 13 =< x2
 + y2
 =< 14 (vì x, y tự nhiên => x2
 + y2
 tự nhiên) 
Trường hợp 1 : x2
 + y2
 = 13 (2) 
Ta có hệ : 
6x2
 + 5y2
 = 74 (1) 
x
2
 + y2
 = 13 (2) 
<=> 6x2
 + 5y2
 = 74 
5x2
 + 5y2
 = 65 
Trừ 2 phương trình : x2
 = 9 <=> x = 3 (vì x >= 0) 
Thay vào (2) y2
 = 13 - x2
 = 13 - 9 = 4 <=> x = 2 
Nghiệm : (x ; y) = (2 ; 3) 
Trường hợp 2 : x2
 + y2
 = 14 (4) 
Ta có hệ : 
6x2
 + 5y2
 = 74 (1) 
x
2
 + y2
 = 14 (3) 
<=> 6x2
 + 5y2
 = 74 
5x2
 + 5y2
 = 70 
Trừ 2 phương trình : x2
 = 4 <=> x = 2 
Thay vào (3) : y2
 = 14 - 4 = 10 <=> y = 10 (loại) 
Vậy phương trình có nghiệm nguyên duy nhất là (x ; y) = (2 ; 3)

29 tháng 10 2016

100\(\le\)\(n^2\)-1=\(\overline{abc}\)\(\le\)999

\(\Rightarrow\)100<101\(\le\)\(n^2\)=\(\overline{abc}\)+1\(\le\)1000

\(\Rightarrow\)\(10^2\)<\(n^2\)<\(32^2\)\(\Rightarrow\)10<n<32

\(\overline{abc}\)-\(\overline{cba}\)=\(n^2\)-1-\(n^2\)+4n-4

\(\overline{abc}\)-\(\overline{cba}\)=(\(n^2\)-\(n^2\))+4n-1-4

\(\overline{abc}\)-\(\overline{cba}\)=0+4n-5

(100.a+10.b+c)-(100c+10b+a)=4n-5

99a-99c=4n-5

\(\Rightarrow\)4n-5\(⋮\)99(1)

Vì 10<n<32\(\Rightarrow\)35<4n<123(2)

Từ (1) và(2) \(\Rightarrow\)4n-5=99

\(\Rightarrow\)n=99+5 :4 =26

\(\overline{abc}\)=\(26^2\)-1

\(\overline{abc}\)=675

\(\overline{cba}\)=576

25 tháng 10 2016

abc = một trong các số có 3 chữ số

OK