Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5(x-2)(x+3)=1
<=> 5(x-2)(x+3)=50
=> (x-2)(x+3) = 0
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Vậy x=-3 hoặc x=2
giai
1 ] y = 1 la nghiệm
-3 x 1 + b = 0
suy ra b = 3 2 ] h[x] = f[x] + G[x] = [ 2x2 + x - 5 ] + [ x2 + 2x + 4 ]
h[x] = f[x] + G[x] = 2x2 + x - 5 + x2 + 2x + 4
h[x] = f[x] + G[x] = [ 2x2 + x2 ] + [ x + 2x ] + [ -5 + 4 ]
h[x] = f[x] + G[x] = 3x2 + 3x + [-1] tu do suy ra h[x] = 3x2 + 2x + [ -1 ]
Ta có :
F(-1) = -1m + 1 + -1 + 1 = 0
=) F(-1) = -m = -1
=) m = 1
Vậy m = 1 thì Da thuc F(x)=m.x3+x2+x+1 co nghiem la -1
Xin lỗi nha Đinh Văn Nguyên mih làm sai cái bài đầu
Ta có :
F(-1) = m . (-1)3 + (-1)2 + (-1) + 1 = 0
=) F(-1) = m . 0 = 0
=) m \(\in\) R
Vậy m \(\in\) R thì Da thuc F(x)=m.x3+x2+x+1 co nghiem la -1
\(1)-4x\left(x-5\right)-2x\left(8-2x\right)=-3\)
\(\Rightarrow-4x^2-\left(-20x\right)-16x+4x^2=-3\)
\(\Rightarrow20x-14x=-3\)
\(\Rightarrow6x=-3\)
\(\Rightarrow x=-\dfrac{1}{2}\)
Vậy \(x=-\dfrac{1}{2}\)
\(2)\) Theo bài ra, ta có: \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\) và \(x^2+y^2+z^2=14\)
\(\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)
\(\Rightarrow\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{4}\right)^3=\left(\dfrac{z}{6}\right)^3\)
\(\Rightarrow\sqrt[3]{\left(\dfrac{x}{2}\right)^3}=\sqrt[3]{\left(\dfrac{y}{4}\right)^3}=\sqrt[3]{\left(\dfrac{z}{6}\right)^3}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)
\(\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{4}\right)^2=\left(\dfrac{z}{6}\right)^2\)
\(\Rightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\)
\(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)
Suy ra:
\(+)\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}.4=1=\left(\pm1\right)^2\Rightarrow x=\pm1\)
\(+)\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{16}.4=\dfrac{1}{4}=\left(\pm\dfrac{1}{2}\right)^2\Rightarrow y=\pm\dfrac{1}{2}\)
\(+)\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{36}.4=\dfrac{1}{9}=\left(\pm\dfrac{1}{3}\right)^2\Rightarrow z=\pm\dfrac{1}{3}\)
Vậy \(\left(x;y;z\right)\in\left\{\left(-1;-\dfrac{1}{2};-\dfrac{1}{3}\right);\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\right\}\)
bạn chỉ cần rút gọn những đa thức có phần biến giống nhau rồi khi đó bạn thấy phần biến nào có số mũ lớn rồi dần từ trên xuống dưới mình giải hết thì mỏi tay viết lắm :D nên chỉ gợi ý được thôi nếu biết thì sau này vânj dụng dễ dàng thì bài này bạn làm được tốt luôn ;D
BT1:
a, Sắp xếp từ lớn đến bé:
\(M_{\left(x\right)}=-x^6+x^4-4\times x^3+x^2-5\)
\(N_{\left(x\right)}=2\times x^5-x^4-x^3+x^2+x-1\)
câu b và câu c bạn áp dụng tính đa thức cột dọc là được nhưng câu c mình gợi ý : \(M_{\left(x\right)}-\left[-N_{\left(x\right)}\right]\)
Tích mình nha!
Ta có x^2 >_ 0 (với mọi x).
3|y-2| >_ 0 (với mọi y)
=> x^2 +3|y-2| >_ 0 (với mọi x,y)
=> C>_ 0
Min C = 0 tại x^2 =0 và 3|y-2| =0
=> x=0 và y=2