\(3+3^2+3^{^{ }3}+....+3^{2015}+3^{2016}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2018

ta có: 3*A = 3\(^2+3^3+....+3^{2016}+3^{2017}\Rightarrow2\cdot A=3^{2017}-3\Rightarrow A=\frac{3}{2}\)*(3\(^{2016}-1\))

TA CÓ  : 3\(^{2016}\)CÓ CHỮ SỐ TẬN CÙNG LÀ 1 \(\Rightarrow3^{2016}-1\)CÓ TẬN CÙNG BẰNG O\(\Rightarrow A\)CÓ TẬN CÙNG LÀ 0.

LÍ DO VÌ 3\(^0\)CÓ  TẬN CÚNG LÀ 1. 3\(^1\)CÓ TẬN CÙNG LÀ 1*3=3  .  3\(^2\)LÀ 3*3=9 LẤY 9 . 3\(^3\)LÀ 9*3=27 LẤY 7 . 3\(^4\)LÀ 7*3=21  LẤY 1 .  THEO ĐÓ TA SUY RA 3\(^{2016}\)DƯ 1

20 tháng 12 2018

Hiểu chết liền!

23 tháng 12 2016

a. 3^2017-3/2

b. 0

 

 

3 tháng 1 2017

a ) Nhân cả hai vế của A với 3 ta được :

3A = 3 ( 3 + 32 + 33 + ..... + 32015 + 32016 )

= 32 + 33 + 34 + ..... + 32016 + 32017 ( 1 )

Trừ cả hai vế của ( 1 ) cho A ta được :

3A - A = ( 32 + 33 + 34 + ..... + 32016 + 32017 ) - ( 3 + 32 + 33 + ..... + 32015 + 32016 )

2A = 32 + 33 + 34 + ..... + 32016 + 32017 - 3 - 32 - 33 - .....- 32015 - 32016

2A = 32017 - 3 => A = \(\frac{3\left(3^{2016}-1\right)}{2}\)

b ) Ta có : 32016 = ( 32 )1008 = 91008

Vì 92n có chữ số tận cùng là 1 => 91008 có chữ số tận cùng là 1

=> 32016 có chữ số tận cùng là 1

=> 32016 - 1 có chữ số tận cùng là 0

=> 3 ( 32016 - 1 ) có chữ số tận cùng là 0

=> \(\frac{3\left(3^{2016}-1\right)}{2}\) có chữ số tân cùng là 5

c ) chịu

30 tháng 12 2016

ta có A = 3+3^2+......+ 3^2016

=> 3A = 3^2 + 3^3 +....+ 3^2017

=> 3A -A = (3^2 + 3^3 +...+ 3^2017)- ( 3+3^2+...+ 3^2016)

=> 2A = 3^ 2017 - 3

=> A = \(\frac{3^{2017}-3}{2}\) 

10 tháng 3 2017

Ta có: \(3;3^2;3^3;...;3^{2015};3^{2016}\)đều chia hết cho \(3\)\(\Rightarrow A⋮3\)

Nhưng chỉ có \(3\)không chia hết cho \(3^2\)\(\Rightarrow A\)không chia hết cho \(3^2\)

Ta có: \(A\)chia hết cho 3 nhưng không chia hết cho \(3^2\)

nên \(A\)không phải là số chính phương

27 tháng 10 2016

1)1

2)3

27 tháng 10 2016

du 2 va 3

7 tháng 3 2019

a) \(A=3+3^2+3^3+.....+3^{2015}\)

\(\Rightarrow3A=3^2+3^3+3^4+......+3^{2016}\)

\(\Rightarrow3A-A=\left(3^2+3^3+3^4+......+3^{2016}\right)-\left(3+3^2+3^3+......+3^{2015}\right)\)

\(\Rightarrow2A=3^{2016}-3\)

\(\Rightarrow A=\frac{3^{2016}-3}{2}\)

b) Dựa vào câu a nha

8 tháng 2 2018

Chữ số tận cùng của \(2^{202}\) là 4.

Chữ số tận cùng của biểu thức A: là 7

\(3M=3^2+3^3+...+3^{2010}\)

\(\Rightarrow M=\frac{3^{2010}-3}{2}\)

Do \(\left(3^{10}\right)^2=\left(59049\right)^2\) có 2 chữ số tận cùng là 01

\(\Rightarrow3^{20}\)tận cùng là 01

\(\Rightarrow3^{20^{100}}=3^{2000}\)tận cùng là 01

Mà 310 tận cùng là 49

\(\Rightarrow3^{2010}=3^{2000}.3^{10}\)tận cùng là 49

=> M tận cùng là 23

8 tháng 2 2018

a) Để mình hướng dẫn nhé (máy tính cầm tay fx-570VN PLUS):

Ví dụ câu a:

Ta nhập vào máy tính như sau:

\(11^{12}\)rồi bạn bấm ALPHA rồi đến dấu \(\sqrt{ }\)(có nghĩa là \(\div R\))

Rồi bạn bấm 2001, nó sẽ ra.

Lúc này màn hình đang hiển thị: \(11^{12}\div R2001\)Rồi ấn dấu " = "

chúc bạn thành công

8 tháng 2 2018

a) Để mình hướng dẫn nhé (máy tính cầm tay fx-570VN PLUS):

Ví dụ câu a:

Ta nhập vào máy tính như sau:

\(11^{12}\)rồi bạn bấm ALPHA rồi đến dấu \(\frac{ }{ }\)(có nghĩa là ÷R)

Rồi bạn bấm 2001, nó sẽ ra.

Lúc này màn hình đang hiển thị: \(11^{12}\div R2001\)Rồi ấn dấu " = ". Nó ra là: \(1568429973\)

chúc bạn thành công