Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:5 đồng dư với 1(mod 4)
\(\Rightarrow\)512 đồng dư với 1(mod 4)
Đặt 512=4k+1(k thuộc N)
\(\Rightarrow17^{5^{12}}=17^{4k+1}\)
Bn làm tiếp
Chữ số tận cùng của \(2^{202}\) là 4.
Chữ số tận cùng của biểu thức A: là 7
3n.2.5-2n.5=5.(3n.2-2n)=5.(2.(3n-(2(n-1))=10.(3n-(2n-1)
vì 10.(3n-(2n-1) nên chữ số tận cùng là số 0 ( mình ko bít cách viết mũ Sorry)
bạn bấm vào fx là có thể viết số mũ
hay bạn bấm vào shilf +6 là ra ^ ( ^ là số mũ)
a)
Ta có
\(4^{21}=\left(4^4\right)^5.4=\left(\overline{...6}\right)^5.4=\left(\overline{...6}\right).4=\left(\overline{....4}\right)\)
=> 4^21 có tận cùng là 4
b)
Ta có
\(9^{53}=\left(9^4\right)^{13}.9=\left(\overline{.....1}\right)^{13}.9=\left(\overline{.....1}\right).9=\left(\overline{....9}\right)\)
=> 9^93 có tận cùng là 9
c)
\(3^{103}=\left(3^4\right)^{25}.3^3=\left(\overline{.....1}\right)^{25}.27=\left(\overline{.....1}\right).27=\left(\overline{....7}\right)\)
=> 3^103 có tận cùng là 7
d)
\(8^{4n+1}=\left(8^4\right)^n.8=\left(\overline{....6}\right)^n.8=\left(\overline{......6}\right).8=\left(\overline{.....8}\right)\)
=> 8^4n+1 có tận cùng là 8
\(4^{21}=\left(...4\right)\)
Do: các số có tận cùng là 4 thì khi nâng lũy thừa bậc lẻ thì số tận cùng giữ nguyên.
\(9^{53}=...9\)
Do: các số có tận cùng là 9 thì khi nâng lũy thừa bậc 4n thì số tận cùng giữ nguyên.
\(3^{301}=3.3^{300}=3.\left(...1\right)=....3\)
Do: các số có tận cùng là 3 thì khi nâng lũy thừa bậc lẻ thì số tận cùng là 1.
\(8^{4n+1}=8.8^{4n}=8.\left(...6\right)=...8\)
Do: các số có tận cùng là 8 thì khi nâng lũy thừa bậc 4n thì số tận cùng là 6.
a) Để mình hướng dẫn nhé (máy tính cầm tay fx-570VN PLUS):
Ví dụ câu a:
Ta nhập vào máy tính như sau:
\(11^{12}\)rồi bạn bấm ALPHA rồi đến dấu \(\sqrt{ }\)(có nghĩa là \(\div R\))
Rồi bạn bấm 2001, nó sẽ ra.
Lúc này màn hình đang hiển thị: \(11^{12}\div R2001\)Rồi ấn dấu " = "
chúc bạn thành công
a) Để mình hướng dẫn nhé (máy tính cầm tay fx-570VN PLUS):
Ví dụ câu a:
Ta nhập vào máy tính như sau:
\(11^{12}\)rồi bạn bấm ALPHA rồi đến dấu \(\frac{ }{ }\)(có nghĩa là ÷R)
Rồi bạn bấm 2001, nó sẽ ra.
Lúc này màn hình đang hiển thị: \(11^{12}\div R2001\)Rồi ấn dấu " = ". Nó ra là: \(1568429973\)
chúc bạn thành công