Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
P=1414 mũ 14+99 mũ 9+23 mũ 4
-Số tận cùng 1414 mũ 14 là 6.
-Số tận cùng 99 mũ 9 là 9.
-Số tận cùng 23 mũ 4 là 6.
⇒ 6+9+6 = 21.
Vậy số tận cùng của P là 1.
Sai thì thôi đừng chửi mình nhé
Bài 2
Gọi 3 số nguyên dương cần tìm là a, b, c
Ta có a + b + c = abc/2
Giả sử a≤b≤ca≤b≤c thì
Do đó abc2≤3cabc2≤3c hay
Có các trường hợp sau
1, ab = 6 suy ra c = 3,5 ( loại )
2, ab = 5 Suy ra a = 1, b = 5 , c = 4 ( Loại)
3, ab = 4 Suy ra a = 1, b = 4 , c = 5( thỏa mãn)
a =2, b = 2, c = 4 (Thỏa mãn)
4, ab = 3 Suy ra a = 1, b = 3, c = 8 ( thỏa mãn)
5, ab = 2..........................................( Không thỏa mãn)
6, ab = 1 ..........................................( Không thỏa mãn
Vậy bộ ba số cần tìm là 1, 4, 5 hoặc 1, 3, 8
Khi 9 có số mũ là số lẻ thì chữ số tận cùng của lũy thửa đó là 9
Khi 4 có số mũ là số chẵn thì chữ số tận cùng của lũy thừa đó là 6
212 có chữ số tận cùng là 6
=>9+6+6 có chữ số tận cùng là 1
Vậy chữ số tận cùng của số P là 1
a) A = 1 + 9 + 92 + 93 + ... + 9101
9A = 9 + 92 + 93 + ... + 9102
9A - A = (9 + 92 + 93 + ... + 9102) - (1 + 9 + 92 + 93 + ... + 9101)
8A = 9 + 92 + 93 + ... + 9102 - 1 - 9 - 92 - 93 - ... - 9101
8A = 9102 - 1
A = \(\frac{9^{102}-1}{8}\)
A = \(\frac{9^{102}}{8}-\frac{1}{8}\)(1)
P = \(\frac{9^{102}}{8}\)(2)
Từ (1) và (2) => A < P
b) 9102
Ta nhóm 2 chữ số 9 vào 1 nhóm, mỗi nhóm có chữ số tận cùng là :
9 x 9 = 81 => chữ số tận cùng là 1
Ta có :
102 : 2 = 51 (nhóm)
Có 51 nhóm có chữ số tận cùng = 1 => 9102 có chữ số tận cùng là 1
Ta có : 9102 - 1 = (...1) - 1 = (...0)
(...0) : 8 = (...0)
16.A
= 16 x (...0)
= (...0)
Vậy chữ số tận cùng của 16.A là 0
Đáp số : a) A < P
b) chữ số tận cùng là 0
a) 799 = ...3
b) 141414 = ...6
c) 4567 = ...4
d) 735 - 43.1 = ...3 - ...4
= ...13 - ...4
= ...9
e) 21930 - 91945 = ...4 - ...9
= ...14 -...9
= ...5
Vì 14^14 chia hết cho 4 nên có dạng 4k (k thuộc N*)
Vì 9^9 chia cho 4 dư 1 nên có dạng 4p +1 (p thuộc N*)
Vì 3^4 chia cho 4 dư 1 nên có dạng 4q +1 (q thuộc N*)
Suy ra A= 14^4k + 9^4p+1 + 2^4q+1 có tận cùng 7
Vây A có tận cùng là 7.