Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=1.....1(2n số 1)=1....1(n số 1).\(10^n\) +1...1(n số 1)
b=1...1(n+1 số 1)=1...1(n số 1).10+1
c=6...6(n số 6)=6.1...1(n số1)
Đặt m=1...1(n số 1) \(\Rightarrow10^n\) =9m+1
a+b+c+8=m.(9m+2)+10m+1+6m+8=9m^2+18m+9=(3m+3)^2 là số chính phương
Vì n là số có 2 chữ số
→10≤n≤99→21≤2n+1≤199
Vì 2n+1 là số chính phương→2n+1∈{25;36;49,64;81;100;121;144;169;196}
Vì 2n+1 là số lẻ→2n+1∈{25;49;81;121;169}
Ta có bảng sau:
2n+1 | 25 | 49 | 81 | 121 | 169 |
n | 12 | 24 | 40 | 60 | 84 |
3n+1 | 37 | 73 | 121 | 181 | 253 |
Với n=40 thì 2n+1=81 là số chính phương và 3n+1=121 là số chính phương
Vậy n=40
Vì n là số có 2 chữ số
\(\rightarrow10\le n\le99\)\(\rightarrow21\le2n+1\le199\)
Vì 2n+1 là số chính phương\(\rightarrow2n+1\in\left\{25;36;49,64;81;100;121;144;169;196\right\}\)
Vì 2n+1 là số lẻ\(\rightarrow2n+1\in\left\{25;49;81;121;169\right\}\)
Ta có bảng sau:
2n+1 | 25 | 49 | 81 | 121 | 169 |
n | 12 | 24 | 40 | 60 | 84 |
3n+1 | 37 | 73 | 121 | 181 | 253 |
Với n=40 thì 2n+1=81 là số chính phương và 3n+1=121 là số chính phương
Vậy n=40
a, \(\frac{1}{3}n=\frac{1}{9}\Rightarrow n=\frac{1}{9}:\frac{1}{3}\Rightarrow n=\frac{1}{9}.3=\frac{1}{3}\)
vậy n=1/3
b, \(\Rightarrow4n.16-2n=0\Rightarrow n.\left(4.16-2\right)=0\Rightarrow62n=0\Rightarrow n=0\)
vậy n=0
c,
a, 1/3n = (1/3)^2
=> n = 1/3
b, 2n = 4n.4^2
=> 2n = 4^3n
=> 2n=2^6n
=> n=2^5n
=> n=0
c) 3n + 2/9 = 3^9
n=177145/27
=>
2*(2n)=4^n
4.^1=4
4^2=6
4^3=4
4^4=6
4^5=4
với n lẻ có 4^n =4
voi n chan 4^n=6
DS
nếu n chan =7
le=5
Mình sẽ tách ra làm từng ý, bạn nhớ k cho mình nhé!
a) Gọi d là ƯCLN ( 2n + 3; 4n + 1 )
Ta có: 2n + 3 chia hết cho d
=> 2 ( 2n + 3 ) chia hết cho d
=> 4n + 6 chia hết cho d
Mà: 4n + 1 chia hết cho d
=> ( 4n + 6 ) - ( 4n + 1 ) chia hết cho d
=> 5 chia hết cho d
=> d thuộc Ư ( 5 )
Giả sử phân số không tối giản:
=> 2n + 3 chia hết cho 5
=> 2n + 3 + 5 chia hết cho 5
=> 2n + 8 chia hết cho 5
=> 2 ( n + 4 ) chia hết cho 5
Vì ƯCLN ( 2; 5 ) = 1
=> n + 4 chia hết cho 5
=> n + 4 = 5k ( k thuộc N* )
=> n = 5k - 4
Vậy với n khác 5k - 4 ( k thuộc N* ) thì phân số bài cho sẽ tối giản.
b) Gọi d = ƯCLN ( 3n + 2; 7n + 1 )
Ta có: 3n + 2 chia hết cho d => 7 ( 3n + 2 ) chia hết cho d => 21n + 14 chia hết cho d ( 1 )
7n + 1 chia hết cho d => 3 ( 7n + 1 ) chia hết cho d => 21n + 3 chia hết cho d ( 2 )
Có: ( 1 ) chia hết cho d; ( 2 ) chia hết cho d
=> ( 1 ) - ( 2 ) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư ( 11 )
Giả sử phân số không tối giản:
=> 7n + 1 chia hết cho 11
=> 7n + 1+ 55 chia hết cho 11
=> 7n + 56 chia hết cho 11
=> 7 ( n + 8 ) chia hết cho 11
Vì ƯCLN ( 7; 11 ) = 1
=> n + 8 chia hết cho 11
=> n + 8 = 11k ( k thuộc N* )
=> n = 11k - 8
Vậy với n khác 11k - 8 ( k thuộc N* ) thì phân số bài cho sẽ tối giản.
Mình làm cho bạn 2 câu, câu còn lại tương tự, bạn tự làm ha! ^v^
a) ta có: 3n + 2 chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n -1
3.(n-1) + 5 chia hết cho n - 1
mà 3.(n-1) chia hết cho n -1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5)={1;-1;5;-5}
...
rùi bn tự lập bảng xét giá trị hộ mk nha!!!
b) ta có: n^2 + 2n + 7 chia hết cho n + 2
=> n.(n+2) + 7 chia hết cho n + 2
mà n.(n+2) chia hết cho n + 2
=> 7 chia hết cho n + 2
=>...
c) ta có: n^2 + 1 chia hết cho n - 1
=> n^2 - n + n -1 + 2 chia hết cho n - 1
n.(n-1) + (n-1) + 2 chia hết cho n -1
(n-1).(n+1) + 2 chia hết cho n - 1
mà (n-1).(n+1) chia hết cho n - 1
=> 2 chia hết cho n - 1
...
câu e;g bn dựa vào phần a mak lm nha!!!
\(d,n+8⋮n+3\)
\(\Leftrightarrow\left(n+3\right)+5⋮n+3\)
\(\Leftrightarrow n+3⋮n+3\Rightarrow5⋮n+3\)
\(\Leftrightarrow n+3\in\left(1;5\right)\)
\(\Leftrightarrow n+3=1\Rightarrow n=-2\left(l\right)\)
\(\Leftrightarrow n+3=5\Rightarrow n=2\left(c\right)\)