\(\dfrac{3^{2023}-1}{2}\) bằng đông dư thức.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2023

Chữ số tận cùng là 8

3 tháng 5 2024

\(\dfrac{3^{2023}-1}{2}\) = \(\dfrac{\overline{...7}-1}{2}\) = \(\dfrac{\overline{...6}}{2}\) = \(\left[{}\begin{matrix}\overline{...3}\\\overline{...8}\end{matrix}\right.\)
Vậy \(\dfrac{3^{2023}-1}{2}\) \(\in\) { \(\overline{...3}\) ; \(\overline{...8}\) }

2 tháng 9 2018

Ta có:

\(2^{2012}=\left(2^4\right)^{503}=16^{503}\)

Ta có:

\(16^5\equiv576\left(mod1000\right)\)

\(\Rightarrow\left(16^5\right)^2\equiv576^2\equiv776\left(mod1000\right)\)

\(\Rightarrow\left(16^{10}\right)^2\equiv776^2\equiv176\left(mod1000\right)\)

\(\Rightarrow\left(16^{20}\right)^4\equiv176^4\equiv576\left(mod1000\right)\)

\(\Rightarrow\left(16^{80}\right)^3\equiv576^3\equiv976\left(mod1000\right)\)

\(\Rightarrow\left(16^{240}\right)^2\equiv976^2\equiv576\left(mod1000\right)\)

\(\Rightarrow16^{480}\equiv576\left(mod1000\right)\)     (1)

Ta có \(16^{20}\equiv576\left(mod1000\right)\)

\(\Rightarrow16^{23}\equiv576.16^3\equiv296\left(mod1000\right)\) (2)

Từ (1),(2)

\(\Rightarrow16^{503}\equiv296.576\equiv496\left(mod1000\right)\)

\(\Rightarrow2^{2012}\equiv496\left(mod1000\right)\)

vậy 3 chữ số tận cùng của 2^2012 là 496

19 tháng 10 2017

mk cần gấp lắm rồi

19 tháng 10 2017

\(A=1+2+2^2+...+2^{99}\)

\(2A=2+2^2+2^3+2^{100}\)

\(2A-A=\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)

\(A=2^{100}-1< 2^{100}\)

19 tháng 10 2017

A=2^100-1

suy ra A<2^100

27 tháng 11 2016

Đặt hai biểu thức trên là A và B ta có:

b)  A = 31989 = 81497.3 có chữ số tận cùng là 1.3 = 3.

a) B = 2999 + 32999 = 16249 . 8 ( có chữ số tận cùng là 8 ) + 81749 . 27 ( có chữ số tận cùng là 7 ). Vậy B có chữ số tận cùng là 5.

29 tháng 3 2020

a, 2999 = 2249.4+3=2249.4 . 23 = (.....6).8=(........8). Vậy 2999 có chữ số tận cùng là 8

b, 3999=3249.4+3=3249.4.33=(......1) . (....7) =(....7) . Vậy 3999 có chữ số tận cùng là 7

14 tháng 3 2019

\(S=1+3^1+3^2+...+3^{30}\)

\(S=1+\left(3^1+3^3\right)+\left(3^2+3^4\right)+...+\left(3^{28}+3^{30}\right)\)

\(S=1+3.10+3^2.10+...+3^{28}.10\)

Có \(3.10+3^2.10+...+3^{28}.10\)có chữ số tận cùng là 0

\(\Rightarrow1+3.10+3^2.10+...+3^{28}.10\)có chữ số tận cùng là 1

=> Chữ số tận cùng của S là 1.

29 tháng 10 2016

Bạn tham khảo bài giảng cô Huyền về Chữ số tận cùng nhé:

Bài giảng - Tìm chữ số tận cùng - Học toán với OnlineMath

29 tháng 10 2016

Cái này phải dùng đồng dư thức mà ad , bài giảng trên ko nói nhiều về cái này

18 tháng 2 2019

6^2019 có tận cùng là sô 6

18 tháng 2 2019

Chữ số tận cùng của 72^4n+1thì mk ko bt

Nhưng chữ số tận cùng của 62019 thì bằng 6 nha :)))

Hok tốt