Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=3^{2008}-3^{2007}+3^{2006}-...+3^2-3+1\)
\(3A=3^{2009}-3^{2008}+3^{2007}-...+3^3-3^2+3\)
\(3A+A=\left(3^{2009}-3^{2008}+3^{2007}-...+3^3-3^2+3\right)+\left(3^{2008}-3^{2007}+3^{2006}-...+3^2-3+1\right)\)
\(4A=3^{2009}+1\)
\(A=\frac{3^{2009}+1}{4}>\frac{1}{4}\)
Vậy \(A>\frac{1}{4}\)
Chúc bạn học tốt ~
Ta có \(3A=3^{2009}-3^{2008}+...-3^2+3\)
\(A=3^{2008}-3^{2007}+...-3+1\)
=> \(4A=3A+A=3^{2009}+1\)
=> \(A=\frac{3^{2009}+1}{4}\)= \(\frac{3^{2009}}{4}+\frac{1}{4}>\frac{1}{4}\)
Các bạn ơi, đính chính lại nhé! Chỉ cần giải bài 1, 2a,2d và bài 3 là được rồi nhé, mình cảm ơn
1. Xét 32^9 và 18^13
ta có 32^9=(2^5)^9=2^45
18^13>16^13=(2^4)^13=2^52
vì 18^13>2^52>2^45 nên 18^13>32^9
2.
a, ta có A=10\(^{2008}\)+125=100...0+125(CÓ 2008 SỐ 0)=100..0125(CÓ 2005 CSO 0)
Vì 45=5.9 nên cần chứng minh A \(⋮5,⋮9\)
mà A có tcung là 5 nên A \(⋮\)5
A có tổng các cso là 9 nên A\(⋮\)9
vậy A \(⋮\)45
d, bn xem có sai đề ko nhé
3, A=(y+x+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)=(y+x+1+x+z+2+x+y-3)/(x+y+z)=2(x+y+z)/(x+y+z)=1/(x+y+z)( AD tchat của dãy tỉ số = nhau)
x+y+z=1/2 hoặc -1/2
còn lai bn tự tính nhé
A = x2009 - 2008x2008 - 2008x2007 - ... - 2008x + 1
x = 2009 => 2008 = x - 1
Thế vào A ta được :
A = x2009 - ( x - 1 )x2008 - ( x - 1 )x2007 - ... - ( x - 1 )x + 1
= x2009 - ( x2009 - x2008 ) - ( x2008 - x2007 ) - ... - ( x2 - x ) + 1
= x2009 - x2009 + x2008 - x2008 + x2007 - ... - x2 + x + 1
= x + 1
= 2009 + 1 = 2010
Vậy A = 2010
Bài 1:
Ta có: 200920=(20092)10=403608110 ; 2009200910=2009200910
Vì 403608110< 2009200910 => 200920< 2009200910
Bài 1:
Ta có:\(2009^{20}\)=\(2009^{10}\).\(2009^{10}\)
\(20092009^{10}\)=(\(\left(2009.10001\right)^{10}=2009^{10}.10001^{10}\)
Vì 2009<10001\(\Rightarrow2009^{20}< 20092009^{10}\)
a)Với mọi \(x;y\in R\) ta có: \(2017\left|2x-y\right|^{2008}+2008\left|y-4\right|^{2007}\ge0\)
mà \(2007\left|2x-y\right|^{2008}+2008\left|y-4\right|^{2007}\le0\)
\(\Rightarrow2007\left|2x-y\right|^{2008}+2008\left|y-4\right|^{2007}=0\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
b) Với mọi \(x;y\in R\) ta có: \(\left|5x+1\right|+\left|6y-8\right|\ge0\)
mà \(\left|5x+1\right|+\left|6y-8\right|\le0\)
\(\Rightarrow\left|5x+1\right|+\left|6y-8\right|=0\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=\dfrac{4}{3}\end{matrix}\right.\)
\(A=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)
\(5.A=5.(1+5+5^2+5^3+...+5^{2008}+5^{2009}) \)
\(5.A=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)
\(5.A-A=4.A=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+5^3+...+5^{2008}+5^{2009})\)
\(4.A=5^{2010}-1\)
\(A=\frac{5^{2010}-1}{4}\)
\(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2\)
\(2.B=2.(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2)\)
\(2.B=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3\)
\(2.B+B=3.B=(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3)+(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2)\)
\(3.B=2^{101}+2^2 \)
\(B=\frac{2^{101}+2^{2}}{3}\)
\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-50^3)\)
\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-10^3)...(1000-50^3)\)
\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-1000)...(1000-50^3)\)
\(C=(1000-1^3).(1000-2^3).(1000-3^3)...0...(1000-50^3)\)
\(C=0\)
Tick cho mình nha!!!
Chúc bạn học tốt!
\(\frac{1}{2}.2^n+4.2^n=9.2^5\Rightarrow2^n\left(\frac{1}{2}+4\right)=288\Rightarrow2^n.\frac{9}{2}=288\Rightarrow2^{n-2}.9=288\Rightarrow2^{n-2}=32\)(dấu "=>" số 3 bn sửa thành 2n-1.9=288=>2n-1=32 nha)
=>2n-1=25=>n-1=5=>n=5+1=6
vậy......
~~~~~~~~~~~~~~~
Chữ số tận cùng của số 2002008 là 0
" 204681012 là 6
" 20072008 là 1
" 13582008 là 6
" 23456 là 6
" 5235 là 8
" 204208 là 6
" 20032005 là 3
" \(^{9^{9^9}}\) là 9
" \(98765^{432^{11112008}}\) là 5
" có nghĩa là : chữ số tận cùng của số
Chỉ cần lấy đường kính của đầu rồi nhân với 3,14, sau đó chia cho khoảng cách 2 sợi tóc, thế là ra.
Chuẩn luôn! Thử đi.