Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{2022}=2^2.\left(2^4\right)^{505}=4.\left(\overline{...6}\right)=\overline{...4}\)
\(2^{2015}=2^3.\left(2^4\right)^{503}=8.\left(\overline{...6}\right)=\overline{...8}\)
\(2^{2027}=2^3.\left(2^4\right)^{506}=8.\left(\overline{...6}\right)=\overline{...8}\)
\(3^{2020}=\left(3^4\right)^{505}=81^{505}=\overline{...1}\)
\(7^{2050}=7^2.\left(7^4\right)^{512}=49.\left(\overline{...1}\right)=\overline{...9}\)
Kết luận: chữ số tận cùng của các số 22022 ; 22015 ; 22027 ; 32020 ; 72050 lần lượt là 4 ; 8 ; 8 ; 1 ; 9.
Chú ý: Các số có chữ số tận cùng là 0, 1, 5, 6 khi nâng lên lũy thừa khác 0 thì chữ số tận cùng vẫn không thay đổi.
ta có 12015+22015+....+20142014+20152015
=>12015+22015+.....+20142015+20152015-2014
(1+2+3+4+....+2014+2015)2015-2014
=20311202015-2014 mà 20311202015 có tận cùng bằng 0 mà
20311202015-2014=......6
suy ra tổng đó có tận cùng là 6
a, 3224=324.6=(.....6)
b, 6122=(.......1)
c, 5348=5312.4=(......1)
d, 7411=744.2+3=744.2.743=(.....4) .(.....4)=(......6)
e, 1982
Bài 4:
Ta có: 1975^430 có chữ tận cùng bằng 5; suy ra 1975^430+2004 có chữ số tận cùng bằng 9.
Mặt khác: 1980*z tận cùng bằng 0với mọi z . Giả sử tồn tại các số tự nhiên x;y;z thỏa mãn biểu thức đã cho thì 19^x+5^y phải có chữ số tận cùng bằng 9 (1)
Số 19^x chỉ tận cùng bằng 1 hoặc 9 với mọi x; 5^y có chữ số tận cùng bằng 1(y=0) hoặc 5
Nếu 19^x tận cùng bằng 1 thì theo (1) 5^y tận cùng bằng 8 ( vô lý)
Nếu 19^x tận cùng bằng 9 thì theo (1) 5^y tận cùng bằng 0 ( vô lý)
Vậy không tồn tai các số tự nhiên x;y;z để 19^x+5^y+1980*z= 1975^430+2004
cách 2
thành 1980 * z, và xét cả th số tự nhiên là 0), không biết bạn có sửa lại không
Tôi chẳng đăng ký bản quyền làm gì nhưng làm thế là rất xấu
---------------
Với tôi số tự nhiên là > 0. Nếu bạn có cả số 0 thì cũng được
19^x + 5^y + 1980 * z= 1975^430 + 2004 ♦
---
19^x chỉ tận cùng là 1 hoặc 9: 9^0 = 1, 9*9 = 8(1), 1*9 = 9
5^y chỉ tận cùng là 1 hoặc 5: 5^0 = 1, 5^n tận cùng là 5 với n ≥ 1
=> VT chỉ tận cùng là 0, 2, 4 hoặc 6
tương tự có VP tận cùng là 9
=> không tồn tại x, y, z sao cho tm ♦
371982 =( 374)495.42 = \(\overline{.....1}\)495.16 = \(\overline{......6}\)
1432022 = (1434)505.1432 = \(\overline{....1}\)505. \(\overline{....9}\) = \(\overline{.....9}\)
552671 = (5524)167.5523 = \(\overline{...6}\)167. \(\overline{...8}\) =\(\overline{.....8}\)
28521 = (284)130. 281 = \(\overline{.....6}\)130. 28 = \(\overline{...8}\)