Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) \(2^{x+2}-96=2^x\)\(\Leftrightarrow2^{x+2}-2^x=96\)\(\Leftrightarrow2^x\left(2^2-1\right)=96\)
\(\Leftrightarrow3.2^x=96\)\(\Leftrightarrow2^x=32=2^5\)\(\Leftrightarrow x=5\)
Vậy \(x=5\)
2) \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b\), \(b=c\), \(c=a\)\(\Rightarrow a=b=c\)
Câu 1:
\(2^{x+2}-96=2^x\)
\(\Leftrightarrow2^{x+2}-2^x=96\)(chuyển vế nha bạn)
\(\Leftrightarrow2^x.\left(2^2-1\right)=96\)
\(\Leftrightarrow2^x.3=96\Rightarrow2^x=32=\left(+-6\right)^2\)
\(\Rightarrow x=2\)
Câu 2:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow a=b.1=b\)và \(b=c.1=c\)và \(c=a.1=a\)
\(\Rightarrow a=b=c\)

a)
Ta có : (6x+11y) chia hết cho 31
=> 6x+11y+31y chia hết cho 31 ( Vì 31 chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x+7y) chia hết cho 31
=> x+7y chia hết cho 31
b)
3a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮53a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮5, mà (3,5)=1(3,5)=1 nên a−c⋮5a−c⋮5
Vì −8≤a−c≤9−8≤a−c≤9 nên a−c∈−5;0;5a−c∈−5;0;5
Với a−c=−5(1)a−c=−5(1), Thế vào (*), được: b−c=3(2)b−c=3(2). Từ (1), (2) suy ra: a−b=−8a−b=−8 hay b=a+8⇒a=1,b=9,c=6b=a+8⇒a=1,b=9,c=6. Ta được số 196.
Với a−c=0a−c=0 hay a=ca=c loại vì 3 chữ số khác nhau.
Với a−c=5a−c=5 lập luận tương tự, ta được:
b=0;a=8;c=3b=0;a=8;c=3. Ta được số 803.
b=1;a=9;c=4b=1;a=9;c=4. Ta được số 914.
Vậy có tất cả 3 số thỏa mãn đề bài.

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}< =>\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Áp dụng tc của dãy tỉ số bằng nhau
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x-y+z}{2-3+5}=\frac{4}{4}=1\)
\(=>\hept{\begin{cases}\frac{x}{2}=1=>x=2\\\frac{y}{3}=1=>y=3\\\frac{z}{5}=1=>z=5\end{cases}}\)
Vậy ...

(2x-5)-(\(\frac{3}{2}\) . 6x + \(\frac{3}{2}\))=4
2x -5 - 9x -\(\frac{3}{2}\) =4
2x - 9x = 4+ 5+ \(\frac{3}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y-4z}{2\cdot3+3\cdot4-4\cdot5}=\frac{-200}{-2}=100\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=100\\\frac{y}{4}=100\\\frac{z}{5}=100\end{cases}\Rightarrow\hept{\begin{cases}x=300\\y=400\\z=500\end{cases}}}\)
Vậy.......
Ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}=\frac{3y}{12}=\frac{4z}{20}=\frac{2x+3y-4z}{6+12-20}=\frac{-200}{-2}=100\)
\(\Rightarrow x=100.3=300\)
\(y=100.4=400\)
\(z=100.5=500\)
Vậy x = 300; y = 400; z = 500
Các