\(C=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)

biết 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2018

      \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow\)\(ab+bc+ac=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}bc=-\left(ab+ac\right)\\ac=-\left(ab+bc\right)\\ab=-\left(bc+ac\right)\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a^2+2bc=\left(a-b\right)\left(a-c\right)\\b^2+2ac=\left(b-a\right)\left(b-c\right)\\c^2+2ab=\left(c-a\right)\left(c-b\right)\end{cases}}\)

do đó:   

\(C=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{b-c+c-a +a-b}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)\(=0\)

P/S:  tham khảo nha. mk lm hơi tắt.   ^_^

12 tháng 1 2018

\(\measuredangle A= \measuredangle B=\measuredangle C= 60^0 \)

 
13 tháng 3 2017

a) đáp án A=1

b) B=0

c) C=1

3 tháng 1 2016

khó quá xin lỗi nha em  mới hok lớp 7

3 tháng 1 2016

Câu này lớp 7 tớ có làm. Cũng như cái mà gọi là áp dụng t/c dãy tỉ số bằng nhau và tỉ lệ thức. mình tính ra dc a, b. c rồi.

10 tháng 7 2016

a,b,c khác nhau đôi một nghĩa là từng cặp số khác nhau ,là:

+a khác b

+b khác c

+c khác a

\(A=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0\)

Suy ra: \(ab==-\left(bc+ac\right)=-bc-ac\)

    \(bc=-\left(ab+ac\right)=-ab-ac\)

\(ac=-\left(ab+bc\right)=-ab-bc\)

Nên \(a^2+2ab=a^2+bc+bc=a^2+bc+\left(-ab-ac\right)=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)

Tương tự,ta cũng có: \(b^2+2ac=\left(b-a\right)\left(b-c\right)\)

                               \(c^2+2ab=\left(c-a\right)\left(c-b\right)\)

Vậy \(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}=\frac{b-c+c-a+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)

10 tháng 7 2016

những câu còn lại tương tự,bn tự làm nhé
 

19 tháng 1 2021

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

=> \(\frac{ab+bc+ac}{abc}=0\)

=> \(ab+bc+ac=0\)

=> \(\hept{\begin{cases}ab=-bc-ac\\bc=-ab-ac\\ac=-ab-bc\end{cases}}\)

a) \(N=\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ac}+\frac{ab}{c^2+2ab}\)

\(=\frac{bc}{a^2-ab-ac+bc}+\frac{ca}{b^2-ab-bc+ac}+\frac{ab}{c^2-ac-bc+ab}\)

\(=\frac{bc}{a\left(a-b\right)-c\left(a-b\right)}+\frac{ca}{b\left(b-a\right)-c\left(b-a\right)}+\frac{ab}{c\left(c-a\right)-b\left(c-a\right)}\)

\(=\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ca}{\left(b-a\right)\left(b-c\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{bc}{\left(a-b\right)\left(a-c\right)}-\frac{ca}{\left(a-b\right)\left(b-c\right)}+\frac{ab}{\left(a-c\right)\left(b-c\right)}\)

\(=\frac{bc\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}-\frac{ca\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{b^2c-bc^2}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}-\frac{ca^2-c^2a}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{b^2c-bc^2-ca^2+c^2a+ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{\left(c^2a-bc^2\right)-\left(ca^2-b^2c\right)+ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{\left(a-b\right)\left(c^2-ac-bc+ab\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{\left(a-b\right)\left[\left(ab-bc\right)-\left(ac-c^2\right)\right]}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)

19 tháng 1 2021

b) \(P=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)

\(=\frac{a^2}{a^2-ab-ac+bc}+\frac{b^2}{b^2-ab-bc+ac}+\frac{c^2}{c^2-bc-ac+ab}\)

\(=\frac{a^2}{a\left(a-b\right)-c\left(a-b\right)}+\frac{b^2}{b\left(b-a\right)-c\left(b-a\right)}+\frac{c^2}{c\left(c-b\right)-a\left(c-b\right)}\)

\(=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)

\(=\frac{a^2}{\left(a-b\right)\left(a-c\right)}-\frac{b^2}{\left(a-b\right)\left(b-c\right)}+\frac{c^2}{\left(b-c\right)\left(a-c\right)}\)

\(=\frac{a^2\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}-\frac{b^2\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{a^2b-a^2c}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}-\frac{b^2a-b^2c}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{a^2b-a^2c-b^2a+b^2c+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{\left(a-b\right)\left(ab-ac-bc+c^2\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)

25 tháng 1 2019

1. a + b + c = 0 \(\Rightarrow\)a + b = -c \(\Rightarrow\)( a + b )2 = ( -c )2 \(\Rightarrow\)a2 + b2 - c2 = -2ab

Tương tự : b2 + c2 - a2 = -2bc ; c2 + a2 - b2 = -2ac

Ta có : \(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)

\(=\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac}=\frac{-1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(=\frac{-1}{2}\left(\frac{a+b+c}{abc}\right)=0\)

2. tương tự

3,4 . có ở dưới, câu hỏi của Quyết Tâm chiến thắng

9 tháng 12 2018

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{ab+bc+ac}{abc}=0\)

\(\Rightarrow ab+bc+ac=0\Rightarrow\hept{\begin{cases}ab=-ac-bc\\bc=-ab-ac\\ac=-ab-bc\end{cases}}\)

\(a^2+2bc=a^2+bc+bc=a^2+bc-ab-ac=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)

Tương tự: \(b^2+2ac=\left(b-c\right)\left(b-a\right)\)

\(c^2+2ab=\left(a-c\right)\left(b-c\right)\)

\(B=\frac{bc+1}{\left(a-b\right)\left(a-c\right)}+\frac{ca+1}{\left(b-a\right)\left(b-c\right)}+\frac{ab+1}{\left(a-c\right)\left(b-c\right)}\)

\(=\frac{bc+1}{\left(a-b\right)\left(a-c\right)}-\frac{ca+1}{\left(a-b\right)\left(b-c\right)}+\frac{ab+1}{\left(a-c\right)\left(b-c\right)}\)

\(=\frac{\left(bc+1\right)\left(b-c\right)-\left(ca+1\right)\left(a-c\right)+\left(ab+1\right)\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(\left(bc+1\right)\left(b-c\right)-\left(ca+1\right)\left(a-c\right)+\left(ab+1\right)\left(a-b\right)\)

\(=\left(bc+1\right)\left(b-c\right)-\left(ca+1\right)\left(a-b\right)-\left(ca+1\right)\left(b-c\right)+\left(ab+1\right)\left(a-b\right)\)

\(=\left(b-c\right)\left(bc+1-ca-1\right)+\left(a-b\right)\left(ab+1-ca-1\right)\)

\(=\left(b-c\right)\left(bc-ca\right)+\left(a-b\right)\left(ab-ca\right)\)

\(=\left(b-c\right)c\left(b-a\right)+\left(a-b\right)a\left(b-c\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

Vậy B = 1

30 tháng 3 2018

          \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow\)\(\frac{ab+bc+ca}{abc}=0\)

\(\Rightarrow\)\(ab+bc+ca=0\)

\(\Rightarrow\)\(\hept{\begin{cases}ab=-\left(bc+ca\right)\\bc=-\left(ab+ca\right)\\ca=-\left(ab+bc\right)\end{cases}}\)

\(\Rightarrow\)\(\hept{\begin{cases}a^2+2bc=a^2+bc-ab-ca=\left(a-b\right)\left(a-c\right)\\b^2+2ac=b^2+ac-ab-bc=\left(b-c\right)\left(b-a\right)\\c^2+2ab=c^2+ab-bc-ca=\left(c-a\right)\left(c-b\right)\end{cases}}\)

\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-a\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)

P/S: đến đây tự lm nhé

23 tháng 11 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow abc.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\Leftrightarrow\hept{\begin{cases}bc=-\left(ab+ac\right)\\ab=-\left(bc+ac\right)\\ac=-\left(bc+ab\right)\end{cases}}\)

Ta có: \(a^2+2bc=a^2+bc+bc=a^2+bc+\left(-ab-ac\right)=\left(a-b\right)\left(a-c\right)\)

Tương tự \(b^2+2ac=\left(b-a\right)\left(b-c\right);c^2+2ab=\left(c-a\right)\left(c-b\right)\)

\(\Leftrightarrow N=\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ac}{\left(b-a\right)\left(b-c\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a^2-b^2\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)