![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : 2xy - 5 = 2x2 + y
\(\implies\) 2xy - 2x2 - y = 5
\(\implies\) ( 2xy - y ) - 2x2 = 5
\(\implies\) y ( 2x - 1 ) - 2x2 = 5
\(\implies\) 2y ( 2x - 1 ) - 4x2 = 10
\(\implies\) 2y ( 2x -1 ) - ( 2x )2 = 10
\(\implies\) 2y ( 2x - 1 ) - ( 2x )2 + 1 = 11
\(\implies\) 2y ( 2x - 1 ) - [ ( 2x )2 - 1 ] = 11
\(\implies\) 2y ( 2x - 1 ) - ( 2x - 1 ) ( 2x + 1 ) =11
\(\implies\) ( 2x - 1 ) [ 2y - ( 2x + 1 ) ] = 11
\(\implies\) 2x - 1 ; 2y - ( 2x + 1 ) \(\in\) Ư ( 11 ) = { 1 ; -1 ; 11 ; -11 }
Ta có bảng sau :
2x - 1 | 1 | -1 | 11 | -11 |
x | 1 | 0 | 6 | -5 |
2y - ( 2x + 1 ) | 11 | -11 | 1 | -1 |
y | 7 | -5 | 7 | -5 |
Vậy ( x ; y ) \(\in\) { (1 ; 7 ), ( 0 ; -5 ) , ( 6 ; 7 ) , (-5 ; -5 ) }
![](https://rs.olm.vn/images/avt/0.png?1311)
=>\(\hept{\begin{cases}2x-3=0\\y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=0\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(\left(2x-5\right)^{2012}\ge0\forall x\)
\(\left(3y+4\right)^{2014}\ge0\forall y\)
\(\rightarrow\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\ge0\forall x,y\)
Theo bài : \(\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\le0\)
\(\rightarrow\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}=0\)
\(\rightarrow\left(2x-5\right)^{2012}=0,\left(3y+4\right)^{2014}=0\)
\(\rightarrow2x-5=0,3y+4=0\)
\(\rightarrow x=\frac{5}{2};y=\frac{-4}{3}\)
Tự tìm M nhé bạn
1, M + (5x2-2xy)= 6x2+9xy-y2
M =(6x2+9xy-y2)- (5x2-2xy)
M = 6x2+9xy-y2-5x2+2xy
M = (6x2-5x2)+(9xy+2xy)-y2
M = x2+11xy-y2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(\frac{2x-3}{4}\right)^{2014}+\left(\frac{3y+4}{5}\right)^{2016}=0\)
Có: \(\left(\frac{2x-3}{4}\right)^{2014}\ge0;\left(\frac{3y+4}{5}\right)^{2016}\ge0\)
Mà theo bài ra: \(\left(\frac{2x-3}{4}\right)^{2014}+\left(\frac{3y+4}{5}\right)^{2016}=0\)
\(\Rightarrow\hept{\begin{cases}\frac{2x-3}{4}=0\\\frac{3y+4}{5}=0\end{cases}}\Rightarrow\hept{\begin{cases}2x-3=0\\3y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}2x=3\\3y=-4\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-\frac{4}{3}\end{cases}}\)
Vậy: \(\hept{\begin{cases}x=\frac{3}{2}\\y=-\frac{4}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{2x-3}{4}=0\\\frac{3y+4}{5}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-\frac{4}{3}\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\hept{\begin{cases}\left|y+2011\right|+30\ge30\\\frac{2010}{\left(2x+6\right)^2+67}\le30\end{cases}\text{dấu = xảy ra khi }}\hept{\begin{cases}\left|y+2011\right|=0\\\left(2x+6\right)=0\end{cases}\Rightarrow\hept{\begin{cases}y=-2011\\x=-3\end{cases}}}\)
làm tắt, cố hiểu nhoa :D!!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}\le0\)
Vì \(\left(2x-y+7\right)^{2012}\ge0\forall x;y\)và \(\left|x-3\right|\ge0\Leftrightarrow\left|x-3\right|^{2013}\ge0\forall x\)
\(\Rightarrow\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}=0\)
Dấy "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y+7=0\\x-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=13\\x=3\end{cases}}}\)
Vậy....
Ta có: \(2xy-5=2x^2+y\)
\(\Leftrightarrow2x^2-2xy+y+5=0\)
\(\Delta^'_x=\left(-y\right)^2-2\left(y+5\right)=y^2-2y-10\)
Điều kiện cần để PT có nghiệm nguyên
=> \(\Delta^'_x\) là số chính phương
\(\Rightarrow y^2-2y-10=m^2\left(m\inℤ\right)\)
\(\Leftrightarrow\left(y-1\right)^2-m^2=11\)
\(\Leftrightarrow\left(y-m-1\right)\left(y+m-1\right)=11\)
Ta xét bảng sau:
Nếu y = 7 => \(\Delta^'_x=25\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{14+5}{4}=\frac{19}{4}\left(ktm\right)\\x=\frac{14-5}{4}=\frac{9}{4}\left(ktm\right)\end{cases}}\)
Nếu y = -5 => \(\Delta^'_x=25\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-10+5}{4}=-\frac{5}{4}\left(ktm\right)\\x=\frac{-10-5}{4}=-\frac{15}{4}\left(ktm\right)\end{cases}}\)
Vậy PT không có nghiệm nguyên