Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x-3y+5z=1 hoặc =-1
TH1: \(\dfrac{x}{y}\)=\(\dfrac{3}{2}\)=>\(\dfrac{x}{3}\)=\(\dfrac{y}{2}\)=>\(\dfrac{x}{15}\)=\(\dfrac{y}{10}\)
\(\dfrac{y}{z}\)=\(\dfrac{5}{7}\)=>\(\dfrac{y}{5}\)=\(\dfrac{z}{7}\)=>\(\dfrac{y}{10}\)=\(\dfrac{z}{14}\)
\(\Rightarrow\)\(\dfrac{x}{15}\)=\(\dfrac{y}{10}\)=\(\dfrac{z}{14}\)=>\(\dfrac{2x}{30}\)=\(\dfrac{3y}{30}\)=\(\dfrac{5z}{70}\)
Áp dụng tính chát dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x-3y+5z}{30-30+70}\)=\(\dfrac{1}{70}\)
=>x=1.15:7=\(\dfrac{3}{14}\)
y=\(\dfrac{1}{7}\)
z=\(\dfrac{1}{5}\)
TH2:............=-1 tự tính nhé làm tương tựmình còn phải ôn bài
a. Đặt \(\dfrac{x}{-3}=\dfrac{y}{5}=k\Leftrightarrow\left\{{}\begin{matrix}x=-3k\\y=5k\end{matrix}\right.\)
mà \(x.y=\dfrac{-5}{27}\)
hay \(-3k.5k=\dfrac{-5}{27}\)
\(\Rightarrow-15.k^2=\dfrac{-5}{27}\)
\(\Rightarrow k^2=\dfrac{1}{81}=\left(\pm\dfrac{1}{9}\right)^2\)
Với \(k=\dfrac{1}{9}\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{3}\\y=\dfrac{5}{9}\end{matrix}\right.\)
Với \(k=\dfrac{-1}{9}\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{-5}{9}\end{matrix}\right.\)
Vậy.......
b. Từ \(\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{3}=\dfrac{z}{5}\end{matrix}\) \(\Rightarrow\begin{matrix}\dfrac{x}{9}=\dfrac{y}{12}\\\dfrac{y}{12}=\dfrac{z}{20}\end{matrix}\) \(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}=\dfrac{x-y+z}{9-12+20}=\dfrac{32}{17}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=\dfrac{32}{17}\Rightarrow x=\dfrac{32.9}{17}=\dfrac{288}{17}\\\dfrac{y}{12}=\dfrac{32}{17}\Rightarrow y=\dfrac{32.12}{17}=\dfrac{384}{17}\\\dfrac{z}{20}=\dfrac{32}{17}\Rightarrow z=\dfrac{32.20}{17}=\dfrac{640}{17}\end{matrix}\right.\)
Vậy.........
a,\(x-\dfrac{3}{5}=\dfrac{3}{5}\)
\(x=\dfrac{3}{5}+\dfrac{3}{5}\)
\(x=\dfrac{6}{5}\)
b,\(\left|x\right|-\dfrac{4}{5}=\dfrac{2}{5}\)
\(\left|x\right|=\dfrac{2}{5}+\dfrac{4}{5}\)
\(\left|x\right|=\dfrac{6}{5}\)
\(\Rightarrow x=\pm\dfrac{6}{5}\)
c,\(\dfrac{x}{-5}=\dfrac{24}{15}\)
\(x=\dfrac{-5.24}{15}\)
\(x=\dfrac{-24}{5}\)
d,Áp dụng tc dãy TSBN, ta có:
\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{x-y}{4-5}=\dfrac{21}{-1}=-21\)
+\(\dfrac{x}{4}=-21\Rightarrow x=-21.4=-84\)
+\(\dfrac{y}{5}=-21\Rightarrow y=-21.5=-105\)
Vậy x=-84 ; y=-105
a/ \(x-\dfrac{3}{5}=\dfrac{3}{5}\)
\(\Leftrightarrow x=\dfrac{3}{5}+\dfrac{3}{5}\)
\(\Leftrightarrow x=\dfrac{6}{5}\)
Vậy...
b/ \(\left|x\right|-\dfrac{4}{5}=\dfrac{2}{5}\)
\(\Leftrightarrow\left|x\right|=\dfrac{2}{5}+\dfrac{4}{5}\)
\(\Leftrightarrow\left|x\right|=\dfrac{6}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=-\dfrac{6}{5}\end{matrix}\right.\)
Vậy...
c/ \(\dfrac{x}{-5}=\dfrac{24}{15}\)
\(\Leftrightarrow15x=-120\)
\(\Leftrightarrow x=-8\)
Vậy...
c/ Theo t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{x-y}{4-5}=\dfrac{21}{-1}=-21\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{4}=-21\\\dfrac{y}{5}=-21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-84\\y=-105\end{matrix}\right.\)
Vậy..
\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
=> 2(2x+1) = 6.7
4x+2=42
4x=40
x=10
Vậy x=10
a)\(\dfrac{6}{2x+1}=\dfrac{2}{7}\\ =>6.7=2.\left(2x+1\right)\\ =>2x+1=\dfrac{6.7}{2}=\dfrac{42}{2}=21\\ =>2x=21-1=20\\ =>x=\dfrac{20}{2}=10\)
b) \(\dfrac{24}{7x-3}=-\dfrac{4}{25}\\ =>24.25=-4.\left(7x-3\right)\\ =>7x-3=\dfrac{24.25}{-4}=-150\\ =>7x=-150+3=-147\\ =>x=\dfrac{-147}{7}=-21\)
c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=-\dfrac{12}{18}\\ =>x-6=\dfrac{4.18}{-12}=-6\\ =>x=-6+6=0\\ y=\dfrac{-12.24}{18}=-16\)
d) \(-\dfrac{1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\\ < =>-\dfrac{8}{40}\le-\dfrac{5x}{40}\le\dfrac{10}{40}\\ =>-8\le-5x\le10\\ Mà:-8< -5.1< -5.0< -5.\left(-1\right)< -5.\left(-2\right)=10\\ =>x\in\left\{-2;-1;0;1\right\}\)
e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\\ < =>\dfrac{x+46}{20}=\dfrac{5x+2}{5}\\ =>5\left(x+46\right)=20\left(5x+2\right)\\ < =>5x+230=100x+40\\ < =>230-40=100x-5x\\ < =>190=95x\\ =>x=\dfrac{190}{95}=2\)
f) \(y\dfrac{5}{y}=\dfrac{56}{y}\\ < =>\dfrac{y^2+5}{y}=\dfrac{56}{y}\\ =>y\left(y^2+5\right)=56y\\ =>y^2+5=\dfrac{56y}{y}=56\\ =>y^2=56-5=51\\ =>y=\sqrt{51}\)
Tìm x và y biết :
a) \(\dfrac{x}{y}=-2\) và \(x+y=12\)
Ta có : \(\dfrac{x}{y}=-2\Rightarrow x=-2y\)
\(x+y=12\Rightarrow-2y+y=12\Rightarrow y=-12\)
\(\Rightarrow x=-2y=-2.\left(-12\right)=24\)
b) \(\dfrac{x}{y}=\dfrac{1}{4}\) và \(x-y=-15\)
Ta có : \(\dfrac{x}{1}=\dfrac{y}{4}=\dfrac{x-y}{1-4}=\dfrac{-15}{-3}=5\)
\(\dfrac{x}{1}=5\Rightarrow x=5\)
\(\dfrac{y}{4}=5\Rightarrow y=20\)
c) \(\dfrac{x}{3}=\dfrac{y}{5}\) và \(x-y=32\)
Ta có : \(\dfrac{x-y}{3-5}=\dfrac{32}{-2}=-16\)
\(\dfrac{x}{3}=-16\Rightarrow x=-48\)
\(\dfrac{y}{5}=-16\Rightarrow y=-80\)
d) \(\dfrac{x}{y}=\dfrac{7}{3}=>\dfrac{x}{7}=\dfrac{y}{3}\)
Ta có : \(\dfrac{x}{7}=\dfrac{y}{3}=\dfrac{x+y}{7+3}=\dfrac{40}{10}=4\)
\(\dfrac{x}{7}=4=>x=28\)
\(\dfrac{y}{3}=4=>y=12\)
e) \(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x+y}{5+9}=\dfrac{56}{14}=4\)
\(\dfrac{x}{5}=4=>x=20\)
\(\dfrac{y}{9}=4=>y=36\)
f) \(\dfrac{x}{7}=\dfrac{y}{10}=\dfrac{x-y}{7-10}=\dfrac{36}{-3}=-12\)
\(\dfrac{x}{7}=-12=>x=-84\)
\(\dfrac{y}{10}=-12=>y=-120\)
ìm x và y biết:
a,xyxy= -2 và x+y =12
b,xyxy=1414 và x-y =-15
c,x3x3=y5y5 và x-y =32
d,xyxy=7373 và x+y =40
e,x5x5=y9y9 và x+y =56
f,x7x7=y10y10 và x-y =36
haha
Bài 1:
\(a,\dfrac{x}{3}=\dfrac{y}{7}\) và \(x+y=20\)
\(=\dfrac{x+y}{3+7}=\dfrac{20}{10}=2\)
\(\Rightarrow x=2.3=6\)
\(y=2.7=14\)
Vậy \(x=6\) và \(y=14\)
\(b,\dfrac{x}{5}=\dfrac{y}{2}\) và \(x-y=6\)
\(=\dfrac{x-y}{5-2}=\dfrac{6}{3}=2\)
\(\Rightarrow x=2.5=10\)
\(y=2.2=4\)
Vậy \(x=10\) và \(y=4\)
\(c,\dfrac{x}{7}=\dfrac{18}{14}\)
Từ tỉ lệ thức trên ta có:
\(14x=7.18\)
\(x=\dfrac{7.18}{14}\)
\(x=9\)
Vậy \(x=9\)
\(d,6:x=1\dfrac{3}{4}:5\)
\(6:x=\dfrac{7}{20}\)
\(x=6:\dfrac{7}{20}\)
\(x=\dfrac{120}{7}\)
Vậy \(x=\dfrac{120}{7}\)
\(e,\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\) và \(x-y+z=8\)
\(=\dfrac{x-y+z}{2-4+6}=\dfrac{8}{4}=2\)
\(\Rightarrow x=2.2=4\)
\(y=2.4=8\)
\(z=2.6=12\)
Vậy \(x=4;y=8;z=12\)
a, \(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x+y}{3+7}=\dfrac{1}{2}\)
Từ đó suy ra x=1,5; y=3,5
b,\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x-y}{5-2}=\dfrac{1}{2}\)
Từ đó suy ra x=2,5; y=1
c,\(\dfrac{x}{7}=\dfrac{18}{14}\Leftrightarrow\dfrac{x}{7}=\dfrac{9}{7}\Rightarrow x=9\)
d,\(\dfrac{6}{x}=\dfrac{\dfrac{7}{4}}{5}\Leftrightarrow\dfrac{6}{x}=\dfrac{24}{7}\left(\dfrac{\dfrac{7}{4}}{5}\right)\Leftrightarrow\dfrac{6}{x}=\dfrac{6}{\dfrac{120}{7}}\Rightarrow x=\dfrac{120}{7}\)
e,\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{8}=\dfrac{x-y+z}{2-4+8}=\dfrac{4}{3}\)
Từ đó suy ra x=\(\dfrac{8}{3}\); y=\(\dfrac{16}{3}\); z=\(\dfrac{32}{3}\)
\(a,A=\dfrac{\dfrac{3}{4}-\dfrac{3}{11}+\dfrac{3}{13}}{\dfrac{5}{7}-\dfrac{5}{11}+\dfrac{5}{13}}+\dfrac{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}}{\dfrac{5}{4}-\dfrac{5}{6}+\dfrac{5}{8}}\\ A=\dfrac{\dfrac{405}{572}}{\dfrac{645}{1001}}+\dfrac{\dfrac{5}{12}}{\dfrac{25}{24}}\\ A=\dfrac{189}{172}+\dfrac{2}{5}\\ A=\dfrac{1289}{860}\)
1.a)\(2.x-\dfrac{5}{4}=\dfrac{20}{15}\)
\(\Leftrightarrow2.x=\dfrac{20}{15}+\dfrac{5}{4}=\dfrac{4}{3}+\dfrac{5}{4}=\dfrac{16+15}{12}=\dfrac{31}{12}\)
\(\Leftrightarrow x=\dfrac{31}{12}:2=\dfrac{31}{12}.\dfrac{1}{2}=\dfrac{31}{24}\)
b)\(\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{8}\right)\)
\(\Leftrightarrow\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{3}=-\dfrac{1}{2}\)
\(\Leftrightarrow x=-\dfrac{1}{2}-\dfrac{1}{3}=-\dfrac{5}{6}\)
2.Theo đề bài, ta có: \(\dfrac{a}{2}=\dfrac{b}{3}\) và \(a+b=-15\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{a+b}{2+3}=\dfrac{-15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=-3\Rightarrow a=-6\\\dfrac{b}{3}=-3\Rightarrow b=-9\end{matrix}\right.\)
3.Ta xét từng trường hợp:
-TH1:\(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\)\(\Rightarrow x\in\left\{0;1\right\}\)
-TH2:\(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)\(\Rightarrow x\in\varnothing\)
Vậy \(x\in\left\{0;1\right\}\)
4.\(B=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^9=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^9=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^{18}=\left(\dfrac{3}{7}\right)^3=\dfrac{27}{343}\)