Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt VT bằng A
\(A^2=x-3+2\sqrt{\left(x-3\right)\left(5-x\right)}+5-x\)
\(A^2=2+2\sqrt{\left(x-3\right)\left(5-x\right)}\le2+\left(x-3\right)+\left(5-x\right)\)
\(A^2\le4\Leftrightarrow A\le2\)
Đặt VP=B
\(B=y^2+2.\sqrt{2013}.y+2013+2\)
\(B=\left(y+\sqrt{2013}\right)^2+2\ge2\)
mà A=B=2
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=5-x\\\left(y+\sqrt{2013}\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-\sqrt{2013}\end{matrix}\right.\)
\(\)
\(\sqrt{x-1}-y\sqrt{y}=\sqrt{y-1}-x\sqrt{x}\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{y-1}\right)+\left(x\sqrt{x}-y\sqrt{y}\right)=0\)
\(\Leftrightarrow\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x-1}+\sqrt{y-1}}+x+\sqrt{xy}+y\right)=0\)
\(\Leftrightarrow x=y\)
\(\Rightarrow S=2x^2-8x+5=2\left(x-2\right)^2-3\ge-3\)
Tại sao từ:\(\left(\sqrt{x-1}-\sqrt{y-1}\right)\) lại => đc: \(\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}\)??????????
Ta có\(x\sqrt{\frac{\left(2015+y^2\right)\left(2015+z^2\right)}{2015+x^2}}=x\sqrt{\frac{\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}{xy+yz+zx+x^2}}\)
\(=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)
Tương tự:\(y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}=yx+yz\)
\(z\sqrt{\frac{\left(2015+x^2\right)\left(2015+y^2\right)}{2015+z^2}}=zx+zy\)
Ta có :\(P=xy+xz+yx+yz+zx+zy=2\left(xy+yz+zx\right)=4030\)
=>P không phải là số chính phương
ĐKXĐ: x,y >1
\(\sqrt{x^2+5}+\sqrt{x-1}+x^2=\sqrt{y^2+5}+\sqrt{y-1}+y^2\\ \)
\(\Leftrightarrow\sqrt{x^2+5}-\sqrt{y^2+5}+\left(\sqrt{x-1}-\sqrt{y-1}\right)+x^2-y^2=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x^2+5}-\sqrt{y^2+5}\right).\left(\sqrt{x^2+5}+\sqrt{y^2+5}\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{\left(\sqrt{x-1}-\sqrt{y-1}\right).\left(\sqrt{x-1}+\sqrt{y-1}\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\frac{\left(x^2+5\right)-\left(y^2+5\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{\left(x-1\right)-\left(y-1\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\frac{x^2-y^2}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right).\left(\frac{x+y}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{1}{\sqrt{x-1}+\sqrt{y-1}}+x+y\right)=0\)
\(\Rightarrow x-y=0\Leftrightarrow x=y\)
Giả sử x=y
Khi đó:
\(\sqrt{x^2+5}+\sqrt{x-1}+x^2\)
\(=\sqrt{y^2+5}+\sqrt{x-1}+y^2\)
Luôn đúng
Vậy ta suy ra đpcm
Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)
\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^
\(\Leftrightarrow2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}-1=0\\\sqrt{y-1}-1=0\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\\\sqrt{z-2}-1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}-1=0\\\sqrt{y-1}-1=0\Leftrightarrow\\\sqrt{z-2}-1=0\end{cases}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}}\)
vậy \(S=x+y=1+2=3\)
ĐK: \(3\le x\le5\)
\(\begin{align} & VT=\left( \sqrt{x-3}+\sqrt{5-x} \right)\le 2\left( x-3+5-x \right) \\ & \Leftrightarrow {{\left( \sqrt{x-3}+\sqrt{5-x} \right)}^{2}}\le 4 \\ & \Rightarrow \sqrt{x-3}+\sqrt{5-x}\le 2 \\ & VP={{\left( y+\sqrt{2013} \right)}^{2}}+2\ge 2 \\ \end{align}\)
Vậy phương trình chỉ tồn tại khi $VT=VP=2$
\(\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{x-3}+\sqrt{5-x}\right)^2=2^2\\\left(y+\sqrt{2013}\right)^2+2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\sqrt{2013}\end{matrix}\right.\)